Multi-layer ear-scalp distillation framework for ear-EEG classification enhancement.

J Neural Eng

School of Computer Science Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China.

Published: December 2024

Background: Ear-electroencephalography (ear-EEG) holds significant promise as a practical tool in brain-computer interfaces (BCIs) due to its enhanced unobtrusiveness, comfort, and mobility compared to traditional steady-state visual evoked potential (SSVEP)-based BCI systems. However, achieving accurate SSVEP classification with ear-EEG remains a major challenge due to the significant attenuation and distortion of the signal amplitude.

Objective: Our aim is to enhance the classification performance of SSVEP using ear-EEG and to increase its practical application value.

Approach: To address this challenge, we focus on enhancing ear-EEG feature representations by training the model to learn features similar to those of scalp-EEG. We introduce a novel framework, termed multi-layer ear-scalp distillation (MESD), designed to optimize SSVEP target classification in ear-EEG data. This framework combines signals from the scalp to obtain multi-layer distilled knowledge through the cooperation of mid-layer feature distillation and output layer response distillation.Mainresults.We improve the classification of the initial 1 s data and achieved a maximum classification accuracy of 81.1%. We evaluate the proposed MESD framework through single-session, cross-session, and cross-subject transfer decoding, comparing it with baseline methods. The results demonstrate that the proposed framework achieves the best classification results in all experiments.

Significance: Our study enhances the classification accuracy of SSVEP based on ear-EEG within a short time window. These results offer insights for the application of ear-EEG brain-computer interfaces in tasks such as auxiliary control and rehabilitation training in future endeavors.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/ad9778DOI Listing

Publication Analysis

Top Keywords

multi-layer ear-scalp
8
ear-scalp distillation
8
ear-eeg
8
classification
8
brain-computer interfaces
8
classification ear-eeg
8
classification accuracy
8
framework
5
distillation framework
4
framework ear-eeg
4

Similar Publications

Multi-layer ear-scalp distillation framework for ear-EEG classification enhancement.

J Neural Eng

December 2024

School of Computer Science Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China.

Background: Ear-electroencephalography (ear-EEG) holds significant promise as a practical tool in brain-computer interfaces (BCIs) due to its enhanced unobtrusiveness, comfort, and mobility compared to traditional steady-state visual evoked potential (SSVEP)-based BCI systems. However, achieving accurate SSVEP classification with ear-EEG remains a major challenge due to the significant attenuation and distortion of the signal amplitude.

Objective: Our aim is to enhance the classification performance of SSVEP using ear-EEG and to increase its practical application value.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!