Cold Sintering Halide-in-Oxide Composite Solid-State Electrolytes with Enhanced Ionic Conductivity.

ACS Appl Mater Interfaces

The Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Published: December 2024

All-solid-state batteries (ASSBs) have attracted increasing attention for next-generation electrochemical energy storage due to their high energy density and enhanced safety, achieved through the use of nonflammable solid-state electrolytes (SSEs). Oxide-based SSEs, such as LiAlTi(PO) (LATP), are notable for their high ionic conductivity and excellent chemical and electrochemical oxidation stability. Nevertheless, their brittle mechanical properties and poor interface contact with electrode materials necessitate high-temperature and long-duration sintering or postcalcination processes, limiting their processability for real-world applications. Additionally, the formation of secondary phases can detrimentally affect the ionic conductivity of LATP electrolytes. Emerging halide-based SSEs offer reliable deformation for practical processing while maintaining high ionic conductivity. In this work, we report a transient liquid-assisted cold sintering process to integrate oxide-based LATP as the matrix and halide-based LiInCl as the conductive boundary phase into a halide-in-oxide ceramic composite electrolyte at a low processing temperature of 150 °C. This composite structure significantly reduces interface resistance, effectively addressing ion-transport depletion across the boundaries between LATP particles. Consequently, the cosintered LATP-LiInCl composite SSE exhibits a high ionic conductivity of 1.4 × 10 S cm at ambient temperature. Furthermore, the symmetric Li|LATP-LiInCl·DMF|Li cell demonstrates stable stripping and plating processes for 1600 h at 55 °C (0.1 mA cm) and 1200 h at 100 °C (1 mA cm). This work represents the first demonstration of halide-oxide ceramic composite SSEs that combine the advantages of oxides and halides for high-performance SSBs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c13031DOI Listing

Publication Analysis

Top Keywords

ionic conductivity
20
high ionic
12
cold sintering
8
solid-state electrolytes
8
ceramic composite
8
composite
5
ionic
5
conductivity
5
sintering halide-in-oxide
4
halide-in-oxide composite
4

Similar Publications

Hydrogen Bonding-Driven Adaptive Coacervates as Protocells.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

Coacervation based on liquid-liquid phase separation (LLPS) has been widely used for the preparation of artificial protocells and to mimic the dynamic organization of membrane-free organelles. Most complex synthetic coacervates are formed through electrostatic interactions but cannot withstand high ionic strength conditions (>0.1 M).

View Article and Find Full Text PDF
Article Synopsis
  • All-solid-state lithium-ion batteries (ASSLBs) are poised to enhance the performance and safety of next-generation electronics, especially electric vehicles, by utilizing solid electrolytes with high ionic conductivity.
  • Researchers have substituted the B-site of LiLaTiO (LLTO) with Ga to create Ga-doped LLTO solid electrolytes, leading to structural improvements, enhanced ionic conductivity, and better electrochemical stability through a solid-state reaction method.
  • The results show that Ga-doped LLTO exhibits a significantly increased ionic conductivity of 4.15 × 10 S cm in LiLaTiGaO (with 3% Ga), making it a promising candidate for future ASSLB applications due to its stable operating voltage range.
View Article and Find Full Text PDF

Organic molecular design for high-power density sodium-ion batteries.

Chem Commun (Camb)

January 2025

Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, Ilmenau 98693, Germany.

Organic materials, with abundant resources, low cost, high flexibility, tunable structures, lightweight nature, and wide operating temperature range, are regarded as promising candidates for sodium-ion batteries (SIBs). Unfortunately, their poor electronic and ionic conductivity remain significant challenges, hindering the achievement of high power density for sodium storage. Power density, a critical factor in battery performance evaluation, is essential for assessing fast charging capabilities.

View Article and Find Full Text PDF

Moisture-responsive ultralow-hysteresis polymer ionogels for adhesion-switchable strain sensing.

Mater Horiz

January 2025

State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.

Adhesion-switchable ultralow-hysteresis polymer ionogels are highly demanded in soft electronics to avoid debonding damage and signal distortion, yet the design and fabrication of such ionogels are challenging. Herein, we propose a novel method to design switchable adhesive ionogels by using binary ionic solvents with two opposite-affinity ionic components. The obtained ionogels exhibit moisture-induced phase separation, facilitating switchable adhesion with a high detaching efficiency (>99%).

View Article and Find Full Text PDF

Abiotic stressors, such as salt stress, can reduce crop productivity, and when combined with biotic pressures, such as insect herbivory, can exacerbate yield losses. However, salinity-induced changes to plant quality and defenses can in turn affect insect herbivores feeding on plants. This study investigates how salinity stress in tomato plants (Solanum Lycopersicum cv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!