Conventional gas sensors encounter a significant obstacle in terms of power consumption, making them unsuitable for integration with the next generation of smartphones, wireless platforms, and the Internet of Things (IoT). Energy-efficient gas sensors, particularly self-powered gas sensors, can effectively tackle this problem. The researchers are making significant strides in advancing photovoltaic self-powered gas sensors by employing diverse materials and their compositions. Unfortunately, several of these sensors seem complex in fabrication and mainly target oxidizing species detection. To address these issues, we have successfully employed a transparent, cost-efficient solution processed bilayer TiO/MoO heterojunction-based photovoltaic self-powered gas sensor with superior VOC sensing capabilities, marking a significant milestone in this field. The scanning Kelvin probe (SKP) measurement reveals the remarkable change in contact potential difference (-23 mV/kPa) of the TiO/MoO bilayered film after UV light exposure in a triethylamine (TEA) atmosphere, indicating the highest reactivity between TEA molecules and TiO/MoO. Under photovoltaic mode, the sensor further demonstrates exceptional sensitivity (∼2.35 × 10 ppm) to TEA compared to other studied VOCs, with an admirable limit of detection (22 ppm) and signal-to-noise ratio (1540). Additionally, the sensor shows the ability to recognize TEA and estimate its composition in a binary mixture of VOCs from a similar class. The strongest affinity of TiO/MoO toward the TEA molecule, the lowest covalent bond energy, and the highest electron-donating nature of TEA may be mainly attributed to the highest adsorption between TiO/MoO and TEA. We further demonstrate the practical applicability of the TEA sensor with a prototype device connected to a smartphone via the IoT, enabling continuous surveillance of TEA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.4c02110 | DOI Listing |
Talanta
January 2025
Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044, China; School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing, 400044, China. Electronic address:
The effective qualitative and quantitative detection of mixed components of volatile organic compounds (VOCs) with similar molecular structures has always been a challenge and hotpoint in the research. A novel quartz-crystal microbalance (QCM) nanocomposite sensor integrated with a surface-enhanced Raman scattering (SERS) detection platform for multi-component gas analysis was proposed and fabricated in this paper. MIL-100 (Fe)/PAN composite fibers were developed on QCM via electrospinning of polyacrylonitrile (PAN) and hydrothermal synthesis, addressing the integration issues of MIL-100 particles in devices while maintaining high specific surface area.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tianjin University of Technology, Institute for New Energy Materials and Low Carbon Technologies, 300384, Tianjin, CHINA.
Porous supramolecular crystalline materials (PSCMs), usually including hydrogen-bonded organic frameworks (HOFs), π frameworks, and so on, can be defined as a type of porous supramolecular assemblies stabilized by hydrogen-bonding, π-π stacking and other non-covalent interactions. Given the unique features of mild synthetic conditions, well-defined and tailorable structures, easy healing and regeneration, PSCMs have captured widespread interest in molecular recognition, sensor, gas storage and separation, and so on. Moreover, they currently emerge as promising photocatalysts because it is readily to endow PSCMs with photo-function, and the hydrogen-bonding and π-π stacking can serve as electron transfer channels to boost photocatalytic activity.
View Article and Find Full Text PDFSci Rep
January 2025
School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, China.
In this paper, a dual-parameter liquid level and refractive index (R.I.) sensor is fabricated using three pieces of bare polymer optical fibers (POFs), which can independently and simultaneously sense the liquid level and R.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
Sichuan University, 610207, Chengdu, China.
In conventional nondispersive infrared (NDIR) gas sensors, a wide-spectrum IR source or detector must be combined with a narrowband filter to eliminate the interference of nontarget gases. Therefore, the multiplexed NDIR gas sensor requires multiple pairs of narrowband filters, which is not conducive to miniaturization and integration. Although plasmonic metamaterials or multilayer thin-film structures are widely applied in spectral absorption filters, realizing high-performance, large-area, multiband, and compact filters is rather challenging.
View Article and Find Full Text PDFLangmuir
January 2025
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China.
MXenes have attracted tremendous attention in electromagnetic interference shielding, energy storage, and gas and humidity detections because of their ultralarge surface area and abundant functional groups. However, their poor stability against hydration and oxidation makes them challenging for long-term storage and applications. Herein, we proposed and demonstrated a TiCT MXene composite-based humidity sensor, of which the stability is pronouncedly enhanced by introducing an O adsorption competitor of extracted bentonite (EB).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!