A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design of a Duplex-to-Complex Structure-Switching Approach for the Homogeneous Determination of Marine Biotoxins in Water. | LitMetric

Design of a Duplex-to-Complex Structure-Switching Approach for the Homogeneous Determination of Marine Biotoxins in Water.

Toxins (Basel)

Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11355, Saudi Arabia.

Published: November 2024

In this report, we describe a fluorescent assay for the detection of six marine toxins in water. The mechanism of detection is based on a duplex-to-complex structure-switching approach. The six aptamers specific to the targeted cyanotoxins were conjugated to a fluorescent dye, carboxyfluorescein (FAM). In parallel, complementary DNA (cDNA) sequences specific to each aptamer were conjugated to a fluorescence quencher BHQ1. In the absence of the target, an aptamer-cDNA duplex structure is formed, and the fluorescence is quenched. By adding the toxin, the aptamer tends to bind to its target and releases the cDNA. The fluorescence intensity is consequently restored after the formation of the complex aptamer-toxin, where the fluorescence recovery is directly correlated with the analyte concentration. Based on this principle, a highly sensitive detection of the six marine toxins was achieved, with the limits of detection of 0.15, 0.06, 0.075, 0.027, 0.041, and 0.026 nM for microcystin-LR, anatoxin-α, saxitoxin, cylindrospermopsin, okadaic acid, and brevetoxin, respectively. Moreover, each aptameric assay showed a very good selectivity towards the other five marine toxins. Finally, the developed technique was applied for the detection of the six toxins in spiked water samples with excellent recoveries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598080PMC
http://dx.doi.org/10.3390/toxins16110476DOI Listing

Publication Analysis

Top Keywords

marine toxins
12
duplex-to-complex structure-switching
8
structure-switching approach
8
detection marine
8
detection
5
design duplex-to-complex
4
approach homogeneous
4
homogeneous determination
4
marine
4
determination marine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!