Future of Uremic Toxin Management.

Toxins (Basel)

Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Gent, Belgium.

Published: October 2024

AI Article Synopsis

  • The article discusses the role of uremic toxins in chronic kidney disease (CKD) and highlights the lack of progress in reducing their effects, despite growing knowledge.
  • It reviews research on alternative strategies to combat uremic toxicity applicable to early CKD stages, covering dietary modifications, pharmacologic interventions, and potential extracorporeal removal methods.
  • The future direction aims to develop sustainable and effective treatments for CKD beyond traditional dialysis methods.

Article Abstract

During the progression of chronic kidney disease (CKD), the retention of uremic toxins plays a key role in the development of uremic syndrome. Knowledge about the nature and biological impact of uremic toxins has grown exponentially over the past decades. However, the science on reducing the concentration and effects of uremic toxins has not advanced in parallel. Additionally, the focus has remained for too long on dialysis strategies, which only benefit the small fraction of people with CKD who suffer from advanced kidney disease, whereas uremic toxicity effects are only partially prevented. This article reviews recent research on alternative methods to counteract uremic toxicity, emphasizing options that are also beneficial in the earlier stages of CKD, with a focus on both established methods and approaches which are still under investigation or at the experimental stage. We will consequently discuss the preservation of kidney function, the prevention of cardiovascular damage, gastro-intestinal interventions, including diet and biotics, and pharmacologic interventions. In the final part, we also review alternative options for extracorporeal uremic toxin removal. The future will reveal which of these options are valid for further development and evidence-based assessment, hopefully leading to a more sustainable treatment model for CKD than the current one.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598275PMC
http://dx.doi.org/10.3390/toxins16110463DOI Listing

Publication Analysis

Top Keywords

uremic toxins
12
uremic toxin
8
kidney disease
8
uremic toxicity
8
uremic
7
future uremic
4
toxin management
4
management progression
4
progression chronic
4
chronic kidney
4

Similar Publications

Indoxyl Sulfate and Its Potential Role in Mineralocorticoid Receptor Transactivation in Chronic Kidney Disease.

Cureus

December 2024

Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Yufu, JPN.

Background: The uremic toxin indoxyl sulfate (IS) is an important factor in chronic kidney disease (CKD) progression. Inhibitors of the renin-angiotensin system and add-on therapy with mineralocorticoid receptor (MR) antagonists can help reduce proteinuria and suppress CKD progression. However, the association between IS and MR activation remains unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Uremic patients accumulate protein-bound uremic toxins (PBUTs), which alter drug metabolism by affecting the environment around liver cells and CYP450 enzymes.
  • The study found that specific PBUTs like indoxyl sulfate (IS) and hippurate (HA) significantly inhibit the metabolism of atorvastatin (ATV), with IS being the most impactful, reducing ATV metabolism by over 50%.
  • Results showed that the expression of the enzyme CYP3A4, critical for drug metabolism, was downregulated in the presence of uremic serum, leading to decreased ATV uptake and excretion due to effects on related signaling pathways.
View Article and Find Full Text PDF

Beta-2 microglobulin-associated amyloidosis: A forgotten link to remember.

Nefrologia (Engl Ed)

January 2025

Nephrology Service, University Hospital Reina Sofia, Cordoba-Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain University of Cordoba, Cordoba, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud, RICORS2040, Institute of Health Carlos III, Madrid, Spain; European Uremic Toxins Group (EUTOx). Electronic address:

View Article and Find Full Text PDF

Liquid chromatography coupled with high resolution mass spectrometry reveals the inhibitory effects of Huangkuisiwu formula on biosynthesis of protein-binding uremic toxins in rats with chronic kidney disease.

J Chromatogr B Analyt Technol Biomed Life Sci

December 2024

Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China. Electronic address:

Chronic kidney disease (CKD) is recognized as a common disorder worldwide. Protein-binding uremic toxins that cannot be efficiently removed by extracorporeal renal replacement therapies, such as indoxyl sulfate (IS) and p-cresyl sulfate (PCS), are associated with high risks of cardiovascular complications and high mortality in CKD population. This study aimed to explore the therapeutical effects of Huangkuisiwu formula (HKSWF) on CKD rats.

View Article and Find Full Text PDF

Chronic Kidney Disease (CKD) is one of the most common conditions affecting felines, yet the metabolic alterations underlying its pathophysiology remain poorly understood, hindering progress in identifying biomarkers and therapeutic targets. This study aimed to provide a comprehensive view of metabolic changes in feline CKD across conserved biochemical pathways and evaluate their progression throughout the disease continuum. Using a multi-biomatrix high-throughput metabolomics approach, serum and urine samples from CKD-affected cats ( = 94) and healthy controls ( = 84) were analyzed with ultra-high-performance liquid chromatography-high-resolution mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!