Biobased foams have the potential to serve as eco-friendly alternatives to petroleum-based foams, provided they achieve comparable thermomechanical and physical properties. We propose a facile approach to fabricate eco-friendly cellulose nanofibril (CNF)-reinforced thermomechanical pulp (TMP) fiber-based foams via an oven-drying process with thermal conductivity as low as 0.036 W/(m·K) at a 34.4 kg/m density. Acrodur, iron chloride (FeCl), and cationic polyacrylamide (CPAM) were used to improve the foam properties. Acrodur did not have any significant effect on the foamability and density of the foams. Mechanical, thermal, cushioning, and water absorption properties of the foams were dependent on the density and interactions of the additives with the fibers. Due to their high density, foams with CPAM and FeCl at a 1% additive dosage had significantly higher compressive properties at the expense of slightly higher thermal conductivity. There was slight increase in compressive properties with the addition of Acrodur. All additives improved the water stability of the foams, rendering them stable even after 24 h of water absorption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11597808PMC
http://dx.doi.org/10.3390/nano14221837DOI Listing

Publication Analysis

Top Keywords

foams
8
thermal conductivity
8
density foams
8
water absorption
8
compressive properties
8
properties
6
enhancement physical
4
physical mechanical
4
mechanical properties
4
properties cellulose
4

Similar Publications

Ceramic aerogels are promising high-temperature thermal insulation materials due to their outstanding thermal stability and oxidation resistance. However, restricted by nanoparticle-assembled network structures, conventional ceramic aerogels commonly suffer from inherent brittleness, volume shrinkage, and structural collapse at high temperatures. Here, to overcome such obstacles, 3D ultralight and highly porous carbon tube foams (CTFs) were designed and synthesized as the carbonaceous precursors, where melamine foams were used as the sacrificial templates to form the hollow and thin-wall network structures in the CTFs (density: ∼4.

View Article and Find Full Text PDF

The objective of this investigation is to overcome the difficulties in fabricating cost-effective, eco-friendly porous geopolymers (PGs) by integrating Coal fly ash (CFA) and spodumene flotation tailings (SFT). This synthesis utilizes a unique blend of CFA and SFT in a 6:4 mass ratio, with specific attention to optimizing the pore architecture to improve the PGs' efficacy. Key parameters included a modulus of 1.

View Article and Find Full Text PDF

This study introduces a method for synthesizing electrically conductive hydrogels by incorporating a self-assembled, percolating graphene network. Our approach differs from previous approaches in two crucial aspects: using pristine graphene rather than graphene oxide and self-assembling the percolation network rather than creating random networks by blending. We use pristine graphene at an oil-water interface to stabilize a water-in-oil emulsion, successfully creating hydrogel foams with conductivities up to 15 mS m and tunable porosity.

View Article and Find Full Text PDF

Ultrasound-Assisted Extraction of Chickpea Proteins and Their Functional and Technological Properties.

Food Technol Biotechnol

December 2024

TÜBİTAK MAM, Climate and Life Sciences, Food Technology Research Group, Barış Mah. Dr. Zeki Acar Cad. No:1 P.K. 21, 41470Gebze Kocaeli, Türkiye.

Research Background: Chickpea is a very good source of protein for the development of protein-enriched plant-based ingredients. Chickpea protein isolates are primarily obtained by wet extraction methods such as alkaline or salt extraction. The energy input required for the production of chickpea protein isolates can have an impact on both the environment and processing, thus affecting nutritional quality and human health.

View Article and Find Full Text PDF

We measure the response of open-cell polyurethane foams filled with a dense suspension of fumed silica particles in polyethylene glycol at compression speeds spanning several orders of magnitude. The gradual compressive stress increase of the composite material indicates the existence of shear rate gradients in the interstitial suspension caused by wide distributions in pore sizes in the disordered foam network. The energy dissipated during compression scales with an effective internal shear rate, allowing for the collapse of three data sets for different pore-size foams.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!