Global warming has recently intensified research interest in renewable polymer chemistry, with significant attention directed towards lignin nanoparticle (LNP) synthesis. Despite progress, LNP industrial application faces challenges: (1) reliance on kraft lignin from declining raw biomass processes, (2) sulfur-rich and condensed lignin use, (3) complex lignin macroparticles to LNP conversion, using harmful and toxic solvents, and, above all, (4) lack of control over the LNP production process (i.e., anti-solvent precipitation parameters), resulting in excessive variability in properties. In this work, eco-friendly LNPs with tailored properties were produced from a semi-industrial organosolv process by studying anti-solvent precipitation variables. Using first a parametric and then a Fractional Factorial Design, predictions of LNP sizes and size distribution, as well as zeta-potential, were derived from a model over beech by-products organosolv lignin, depending on initial lignin concentration (x, g/L), solvent flow rate (x, mL/min), antisolvent composition (x, H2O/EtOH /), antisolvent ratio (x, solvent/antisolvent /), and antisolvent stirring speed (x, rpm). This novel chemical engineering approach holds promise for overcoming the challenges inherent in industrial lignin nanoparticle production, thereby accelerating the valorization of lignin biopolymers for high value-added applications such as cosmetics (sunscreen or emulsion) and medicine (encapsulation, nanocarriers), a process currently constrained by significant limitations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11597156 | PMC |
http://dx.doi.org/10.3390/nano14221786 | DOI Listing |
Food Chem
March 2025
College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, PR China. Electronic address:
Improving sea buckthorn flavonoids (SF) stability and bioacccessibility is of more practical significance for evaluating the total bioacccessibility of such foods. Therefore, we prepared nanoparticles using zein and gum Arabic (GA) by anti-solvent precipitation to encapsulate SF. Nanoparticles were characterized and assessed for their effect on the stability, release, bioaccessibility, absorption, and antioxidant properties of SF in the in vitro digestion and cell line.
View Article and Find Full Text PDFChemSusChem
December 2024
Department of Chemistry and Material Science, Langfang Normal University, Langfang, 065000, Hebei, China.
Food Chem
February 2025
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
In this study, the encapsulation of melatonin (MT) in zein nanoparticles was investigated via anti-solvent co-precipitation method with pectin stabilization. Compared with MT-loaded zein nanoparticles (MT-Z NPs), 1.0 mg/mL pectin led to a 92.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
LERMAB, Faculty of Science and Technology, University of Lorraine, INRAe, F-54000 Nancy, France.
Global warming has recently intensified research interest in renewable polymer chemistry, with significant attention directed towards lignin nanoparticle (LNP) synthesis. Despite progress, LNP industrial application faces challenges: (1) reliance on kraft lignin from declining raw biomass processes, (2) sulfur-rich and condensed lignin use, (3) complex lignin macroparticles to LNP conversion, using harmful and toxic solvents, and, above all, (4) lack of control over the LNP production process (i.e.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
Because of the unique and superior optoelectronic properties, metal halide perovskites (MHPs) have attracted great interest in photocatalysis. Element doping strategy is adopted to modify perovskite materials to improve their photocatalytic performance. However, the contribution of bare doping-site onto photocatalytic efficiency, and the correlation between doping locations and activity have not yet to be demonstrated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!