Benzene, toluene, and xylene (BTX) co-exist in human environments, yet their individual and combined effects on genetic damage at low exposure levels are not fully understood. Additionally, single nucleotide polymorphisms in microRNAs (mirSNPs) might be involved in cancer etiology by affecting the related early health damage. To investigate the influence of BTX exposure, mirSNPs, and their interactions on genetic damage, we conducted a cross-sectional study in 1083 Chinese petrochemical workers, quantifying the BTX cumulative exposure levels and multiple genetic damage biomarkers. Additionally, we genotyped multiple common mirSNPs. Benzene and a BTX mixture were positive associated with the olive tail moment (OTM) and tail DNA% ( < 0.05). Higher levels of toluene and xylene enhanced the association of benzene with genetic damage levels. Genotypes and/or mutant allele counts of miR-4482-related rs11191980, miR-4433-related rs136547, miR-27a-related rs2594716, miR-3130-related rs725980, and miR-3928-related rs878718 might significantly influence genetic damage levels. Stronger effect estimates of benzene/BTX exposure were found in carriers of miR-196a-2-related rs11614913 heterozygotes and of wild homozygotes of miR-1269b-related rs12451747, miR-612-related rs12803915, and miR-4804-related rs266437. Our findings provide further support of the involvement of BTX co-exposure, mirSNPs, and their gene-environment interactions in determining the severity of DNA strand break in a complex manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598265 | PMC |
http://dx.doi.org/10.3390/toxics12110821 | DOI Listing |
Nucleic Acids Res
January 2025
MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China.
Meiosis in mammalian oocytes is interrupted by a prolonged arrest at the germinal vesicle stage, during which oocytes have to repair DNA lesions to ensure genome integrity or otherwise undergo apoptosis. The FIRRM/FLIP-FIGNL1 complex dissociates RAD51 from the joint DNA molecules in both homologous recombination (HR) and DNA replication. However, as a type of non-meiotic, non-replicative cells, whether this RAD51-dismantling mechanism regulates genome integrity in oocytes remains elusive.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Physics, 845 W Taylor St, University of Illinois Chicago, Chicago, IL 60607, USA.
Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Shizishan Road No.1, Hongshan District, 430070 Wuhan, China.
Primase-polymerases (PrimPols) play divergent functions from DNA replication to DNA repair in all three life domains. In archaea and bacteria, numerous and diverse PPs are encoded by mobile genetic elements (MGEs) and act as the replicases for their MGEs. However, their varying activities and functions are not fully understood.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Kansai Institute for Photon Science, National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan.
Ionizing radiation induces various types of DNA damage, and the reparability and lethal effects of DNA damage differ depending on its spatial density. Elucidating the structure of radiation-induced clustered DNA damage and its repair processes will enhance our understanding of the lethal impact of ionizing radiation and advance progress toward precise therapeutics. Previously, we developed a method to directly visualize DNA damage using atomic force microscopy (AFM) and classified clustered DNA damage into simple base damage clusters (BDCs), complex BDCs and complex double-strand breaks (DSBs).
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.
Background: A decline in skeletal muscle mass and function known as skeletal muscle sarcopenia is an inevitable consequence of aging. Sarcopenia is a major cause of decreased muscle strength, physical frailty and increased muscle fatigability, contributing significantly to an increased risk of physical disability and functional dependence among the elderly. There remains a significant need for a novel therapy that can improve sarcopenia and related problems in aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!