Curvilinear magnetism emerged as a new route to tailor properties of magnetic solitons by the choice of geometry and topology of a magnetic architecture. Here, we develop an anodized aluminum oxide template-based approach to realize hierarchical 3D magnetic nanoarchitectures of nanoflower shape. The technique provides defect-free regular arrays of magnetic nanoflowers of tunable shape with a period of 400 nm over cm areas. We combined advanced magnetic imaging methods with micromagnetic simulations to study complex magnetic states in nanoflowers originating due to magnetostatics-driven symmetry break in curvilinear nanomembranes. An interaction between surface and volume magnetostatic charges in 3D curved nanoflowers leads to the stabilization of asymmetric and shifted vortices as well as states with two Bloch lines. Ordered large area arrays of complex-shaped magnetic nanoarchitectures developed in this work are relevant for prospective research on 3D magnonics and spintronics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639047 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.4c04584 | DOI Listing |
Nanotechnology
December 2024
Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, UMR7588, F-75005 Paris, France.
We present a sequential growth scheme based on pulsed laser deposition, which yields dense arrays of ultrathin, match-shaped Au/CoNi nanopillars, vertically embedded in SrTiOthin films. Analysis of the magnetic properties of these nanocomposites reveals a pronounced out-of-plane anisotropy. We show that the latter not only results from the peculiar nanoarchitecture of the hybrid films but is further enhanced by strong magneto-structural coupling of the wires to the surrounding matrix.
View Article and Find Full Text PDFNano Lett
December 2024
Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany.
Curvilinear magnetism emerged as a new route to tailor properties of magnetic solitons by the choice of geometry and topology of a magnetic architecture. Here, we develop an anodized aluminum oxide template-based approach to realize hierarchical 3D magnetic nanoarchitectures of nanoflower shape. The technique provides defect-free regular arrays of magnetic nanoflowers of tunable shape with a period of 400 nm over cm areas.
View Article and Find Full Text PDFMikrochim Acta
November 2024
Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
Considering the high incidence of breast cancer, a sensitive and specific approach is crucial for its early diagnosis and follow-up treatment. Folate receptors (FR), which are highly expressed on the epithelial tissue such as breast cancer cells (e.g.
View Article and Find Full Text PDFMol Pharm
November 2024
Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China.
Despite the advancements in cancer therapy, delivering active pharmaceutical ingredients (APIs) using nanoparticles remains challenging due to the failed conveyance of the required drug payload, poor targeting ability, and poor biodistribution, hampering their clinical translation. Recently, the appropriate design of materials with intrinsic therapeutic functionalities has garnered enormous interest in the development of various intelligent therapeutic nanoplatforms. In this study, we demonstrate the fabrication of transition metal (molybdenum, Mo)-doped manganese dioxide (MnO) nanoarchitectures, exhibiting diagnostic (magnetic resonance imaging, MRI) and therapeutic (chemodynamic therapy, CDT) functionalities.
View Article and Find Full Text PDFAdv Mater
August 2024
IMDEA Nanoscience, Campus Universitario de Cantoblanco, Madrid, 28049, Spain.
The design of innovative carbon-based nanostructures stands at the forefront of both chemistry and materials science. In this context, π-conjugated compounds are of great interest due to their impact in a variety of fields, including optoelectronics, spintronics, energy storage, sensing and catalysis. Despite extensive research efforts, substantial knowledge gaps persist in the synthesis and characterization of new π-conjugated compounds with potential implications for science and technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!