Identification of Spatial Specific Lipid Metabolic Signatures in Long-Standing Diabetic Kidney Disease.

Metabolites

Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Published: November 2024

Diabetic kidney disease (DKD) is a major complication of diabetes leading to kidney failure. This study investigates lipid metabolism profiles of long-standing DKD (LDKD, diabetes duration > 10 years) by integrative analysis of available single-cell RNA sequencing and spatial multi-omics data (focusing on spatial continuity samples) from the Kidney Precision Medicine Project. Two injured cell types, an injured thick ascending limb (iTAL) and an injured proximal tubule (iPT), were identified and significantly elevated in LDKD samples. Both iTAL and iPT exhibit increased lipid metabolic and biosynthetic activities and decreased lipid and fatty acid oxidative processes compared to TAL/PT cells. Notably, compared to PT, iPT shows significant upregulation of specific injury and fibrosis-related genes, including and . Meanwhile, comparing iTAL to TAL, inflammatory-related genes such as and are significantly upregulated. Furthermore, spatial metabolomics analysis reveals regionally distributed clusters in the kidney and notably differentially expressed lipid metabolites, such as triglycerides, glycerophospholipids, and sphingolipids, particularly pronounced in the inner medullary regions. These findings provide an integrative description of the lipid metabolism landscape in LDKD, highlighting injury-associated cellular processes and potential molecular mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596753PMC
http://dx.doi.org/10.3390/metabo14110641DOI Listing

Publication Analysis

Top Keywords

lipid metabolic
8
diabetic kidney
8
kidney disease
8
lipid metabolism
8
lipid
6
kidney
5
identification spatial
4
spatial specific
4
specific lipid
4
metabolic signatures
4

Similar Publications

The Oxidoreductase Retinol Saturase in Thyroid Gland Is Regulated by Hypothyroidism and Iodide Overload and Its Deletion Impairs Metabolic Homeostasis in Mice.

Antioxid Redox Signal

January 2025

Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.

Thyroid hormones (TH) are major regulators of cell differentiation, growth, and metabolic rate. TH synthesis in the thyroid gland requires high amounts of HO to oxidize iodide for the iodination of thyroglobulin (TG). Retinol Saturase (RetSat) is an oxidoreductase implicated in dihydroretinol formation and cellular sensitivity toward peroxides and ferroptosis.

View Article and Find Full Text PDF

Background: Overdose of acetaminophen (APAP), a commonly used antipyretic analgesic, can lead to severe liver injury and failure. Current treatments are only effective in the early stages of APAP-induced acute liver injury (ALI). Therefore, a detailed examination of the mechanisms involved in liver repair following APAP-induced ALI could provide valuable insights for clinical interventions.

View Article and Find Full Text PDF

Cadmium is a heavy metal contaminant known to cause various health issues. However, limited research exists on the serum metabolomic effects of cadmium exposure in children. In this study, we recruited 42 children to analyze their serum metabolomic profiles, along with measuring urinary cadmium and creatinine concentrations, to evaluate the impact of environmental cadmium exposure on serum metabolism.

View Article and Find Full Text PDF

Multi Targeted Activity of Cocculus hirsutus through Modulation of DPP-IV and PTP-1B Leading to Enhancement of Glucose Uptake and Attenuation of Lipid Accumulation.

Appl Biochem Biotechnol

January 2025

Tissue Culture and Drug Discovery Laboratory, Department of Biotechnology, Anna University, Chennai, 600 025, India.

Multi-targeted therapies are gaining attention in the management of multifactorial diseases due to their poly pharmacology, enhanced potency and reduced toxicity. Metabolic disorders like Type 2 diabetes mellitus (T2DM) and obesity necessitate multi-targeted therapy to improve insulin sensitivity, regulate glucose homeostasis and support weight loss. Medicinal plants rich in bioactive compounds exhibit multi-targetted action with minimal side effects.

View Article and Find Full Text PDF

Changes in the lipid and carbohydrate metabolism, adipokines, and growth factors during the development of metabolic disorders were studied in three mouse models: C57BL/6 (alimentary obesity), db/db (leptin-resistant obesity), and NOD (diabetes mellitus) lines. In the group of alimentary obesity, moderate fatty infiltration of the liver and hypertrophy of the adipose tissue, hyperglycemia, and increased concentrations of adiponectin, transforming growth factor β1 (TGF-β1), leptin, and cholesterol were detected. In the group of leptin-resistant obesity, multiple pathological changes in tissues, severe hyperglycemia and hyperleptinemia, hyperinsulinemia, and reduced concentrations of triglycerides, adiponectin, myostatin, and TGF-β1 were detected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!