Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Echocardiography is the gold standard for the comprehensive diagnosis of cardiac septal defects (CSDs). Currently, echocardiography diagnosis is primarily based on expert observation, which is laborious and time-consuming. With digitization, deep learning (DL) can be used to improve the efficiency of the diagnosis. This study presents a real-time end-to-end framework tailored for pediatric ultrasound video analysis for CSD decision-making. The framework employs an advanced real-time architecture based on You Only Look Once (Yolo) techniques for CSD decision-making with high accuracy. Leveraging the state of the art with the Yolov8l (large) architecture, the proposed model achieves a robust performance in real-time processes. It can be observed that the experiment yielded a mean average precision (mAP) exceeding 89%, indicating the framework's effectiveness in accurately diagnosing CSDs from ultrasound (US) videos. The Yolov8l model exhibits precise performance in the real-time testing of pediatric patients from Mohammad Hoesin General Hospital in Palembang, Indonesia. Based on the results of the proposed model using 222 US videos, it exhibits 95.86% accuracy, 96.82% sensitivity, and 98.74% specificity. During real-time testing in the hospital, the model exhibits a 97.17% accuracy, 95.80% sensitivity, and 98.15% specificity; only 3 out of the 53 US videos in the real-time process were diagnosed incorrectly. This comprehensive approach holds promise for enhancing clinical decision-making and improving patient outcomes in pediatric cardiology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595487 | PMC |
http://dx.doi.org/10.3390/jimaging10110280 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!