A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exogenous L-Arginine Enhances Pathogenicity of on Kiwifruit by Regulating Metabolisms of Nitric Oxide, Polyamines, Reactive Oxygen Species (ROS), and Cell Wall Modification. | LitMetric

Exogenous L-Arginine Enhances Pathogenicity of on Kiwifruit by Regulating Metabolisms of Nitric Oxide, Polyamines, Reactive Oxygen Species (ROS), and Cell Wall Modification.

J Fungi (Basel)

Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.

Published: November 2024

Black spot, one of the major diseases of kiwifruit, is caused by . A comprehensive investigation into its pathogenicity mechanism is imperative in order to propose a targeted and effective control strategy. The effect of L-arginine on the pathogenicity of and the underlying mechanisms were investigated. The results showed that treatment with 5 mM L of L-arginine promoted spore germination and increased the colony diameter and lesion diameter of in vivo and in vitro, which were 23.1% and 9.3% higher than that of the control, respectively. Exogenous L-arginine treatment also induced endogenous L-arginine and nitric oxide (NO) accumulation by activating nitric oxide synthase (NOS), arginine decarboxylase (ADC) and ornithine decarboxylase (ODC). In addition, exogenous L-arginine triggered an increase in reactive oxygen species (ROS) levels by activating the activity and inducing gene expression upregulation of NADPH oxidase. The hydrogen peroxide (HO) and superoxide anion (O) levels were 15.9% and 2.2 times higher, respectively, than in the control group on the second day of L-arginine treatment. Meanwhile, antioxidant enzyme activities and gene expression levels were enhanced, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX), and glutathione reductase (GR). In addition, exogenous L-arginine stimulated cell wall-degrading enzymes in vivo and in vitro by activating gene expression. These results suggested that exogenous L-arginine promoted the pathogenicity of by inducing the accumulation of polyamines, NO, and ROS, and by activating systems of antioxidants and cell wall-degrading enzymes. The present study not only revealed the mechanism by which low concentrations of L-arginine increase the pathogenicity of , but also provided a theoretical basis for the exclusive and precise targeting of in kiwifruit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595605PMC
http://dx.doi.org/10.3390/jof10110801DOI Listing

Publication Analysis

Top Keywords

exogenous l-arginine
20
nitric oxide
12
gene expression
12
l-arginine
9
reactive oxygen
8
oxygen species
8
species ros
8
l-arginine promoted
8
vivo vitro
8
higher control
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!