To contrast the rapid spread of antibiotic resistance in bacteria, new alternative therapeutic options are urgently needed. The use of nanoparticles as carriers for clinically relevant antibiotics represents a promising solution to potentiate their efficacy. In this study, we used larvae for the first time as an animal model for testing a nanoconjugated glycopeptide antibiotic (teicoplanin) against infection. larvae might thus replace the use of mammalian models for preclinical tests, in agreement with the European Parliament Directive 2010/63/EU. The curative effect of teicoplanin (a last resort antibiotic against Gram-positive bacterial pathogens) conjugated to iron oxide nanoparticles was assessed by monitoring the survival rate of the larvae and some immunological markers (i.e., hemocyte viability, phenoloxidase system activation, and lysozyme activity). Human physiological conditions of infection were reproduced by performing the experiments at 37 °C. In this condition, nanoconjugated teicoplanin cured the bacterial infection at the same antibiotic concentration of the free counterpart, blocking the insect immune response without causing mortality of silkworm larvae. These results demonstrate the value and robustness of the silkworm as an infection model for testing the in vivo efficacy of nanoconjugated antimicrobial molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595181PMC
http://dx.doi.org/10.3390/insects15110886DOI Listing

Publication Analysis

Top Keywords

vivo efficacy
8
efficacy nanoconjugated
8
nanoconjugated glycopeptide
8
glycopeptide antibiotic
8
silkworm larvae
8
model testing
8
antibiotic
5
larvae
5
nanoconjugated
4
antibiotic silkworm
4

Similar Publications

Objective: Boron Neutron Capture Therapy (BNCT) is a novel precision radiotherapy. The key to BNCT application lies in the effective targeting and retention of the boron-10 (B) carrier. Among the various compounds studied in clinical settings, 4-boronophenylalanine (BPA) become the most prevalent one currently.

View Article and Find Full Text PDF

: Diabetes is a well-recognised factor inducing a plethora of corneal alterations ranging from dry eye to reduced corneal sensibility, epithelial defects, and reduced cicatrisation. This cohort study aimed to assess the efficacy of a novel ophthalmic solution combining cross-linked hyaluronic acid (CHA), chondroitin sulfate (CS), and inositol (INS) in managing diabetes-induced corneal alterations. Specifically, it evaluated the solution's impact on the tear breakup time (TBUT), the ocular surface disease index (OSDI), and corneal sensitivity after three months of treatment.

View Article and Find Full Text PDF

Radiofrequency ablation (RFA) is a minimally invasive procedure that utilizes localized heat to treat tumors by inducing localized tissue thermal damage. The present study aimed to evaluate the temperature evolution and spatial distribution, ablation size, and reproducibility of ablation zones in ex vivo liver, kidney, and lung using a commercial device, i.e.

View Article and Find Full Text PDF

Background/objectives: Intrahepatic cholangiocarcinoma (iCCA) is a malignant liver tumor with a rising global incidence and poor prognosis, largely due to late-stage diagnosis and limited effective treatment options. Standard chemotherapy regimens, including cisplatin and gemcitabine, often fail because of the development of multidrug resistance (MDR), leaving patients with few alternative therapies. Doxycycline, a tetracycline antibiotic, has demonstrated antitumor effects across various cancers, influencing cancer cell viability, apoptosis, and stemness.

View Article and Find Full Text PDF

Pancreatic cancer is the third leading cause of cancer-related mortality in the United States, with rising incidence and mortality. The receptor for advanced glycation end products (RAGE) and its ligands significantly contribute to pancreatic cancer progression by enhancing cell proliferation, fostering treatment resistance, and promoting a pro-tumor microenvironment via activation of the nuclear factor-kappa B (NF-κB) signaling pathways. This study validated pathway activation in human pancreatic cancer and evaluated the therapeutic efficacy of TTP488 (Azeliragon), a small-molecule RAGE inhibitor, alone and in combination with radiation therapy (RT) in preclinical models of pancreatic cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!