Oxysophocarpine (OSC), a quinolizidine alkaloid, shows neuroprotective potential, though its mechanisms are unclear. The aim of the present study was to investigate the neuroprotective effects of OSC through the nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) signaling pathway using the HT-22 cell line. Assessments of cell viability were conducted utilizing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Assessments of oxidative stress (OS) were conducted through the quantification of reactive oxygen species (ROS). The integrity of the mitochondrial membrane potential (MMP) was scrutinized using fluorescent probe technology. Apoptosis levels were quantified using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The trafficking of Nrf2 within the cell nucleus was examined through immunofluorescence analysis. Furthermore, Western blotting (WB) was applied to evaluate the expression levels of proteins implicated in apoptosis and the Nrf2/HO-1 pathway. To further probe the influence of OSC on the overexpression of antioxidant enzymes, cells were subjected to transfection with HO-1 siRNA. The results showed that OSC inhibited glutamate-induced OS, as evidenced by reduced cell viability and ROS levels. Furthermore, the apoptotic condition induced by glutamate in HT-22 cells was significantly reduced following OSC treatment. More interestingly, the Nrf2/HO-1 signaling pathway was upregulated following OSC treatment. These results suggest that OSC can exert neuroprotective effects by regulating the Nrf2/HO-1 pathway to inhibit neuronal cell apoptosis, potentially aiding in the treatment of neurodegenerative diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593028PMC
http://dx.doi.org/10.3390/cimb46110777DOI Listing

Publication Analysis

Top Keywords

signaling pathway
12
ht-22 cells
8
nrf2/ho-1 signaling
8
neuroprotective effects
8
cell viability
8
nrf2/ho-1 pathway
8
osc treatment
8
osc
7
pathway
5
cell
5

Similar Publications

This study evaluates the oncolytic potential of the Moscow strain of reovirus against human metastatic melanoma and glioblastoma cells. The Moscow strain effectively infects and replicates within human melanoma cell lines and primary glioblastoma cells, while sparing non-malignant human cells. Infection leads to the selective destruction of neoplastic cells, mediated by functional viral replication.

View Article and Find Full Text PDF

Exploring the Mechanisms for Virus Invasion at the Barrier of Host Defense Involving Signaling Pathways.

Viruses

December 2024

Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA.

Pathogenic viruses trigger or disrupt multiple signaling networks to establish an environment optimized for their own replication and productive infection [...

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), which are the only members of the gamma(γ) herpesviruses, are oncogenic viruses that significantly contribute to the development of various human cancers, such as Burkitt's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, Kaposi's sarcoma, and primary effusion lymphoma. Oncogenesis triggered by γ-herpesviruses involves complex interactions between viral genetics, host cellular mechanisms, and immune evasion strategies. At the genetic level, crucial viral oncogenes participate in the disruption of cell signaling, leading to uncontrolled proliferation and inhibition of apoptosis.

View Article and Find Full Text PDF

During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA gamma herpesvirus. Like other herpesviruses, KSHV establishes a latent infection with limited gene expression, while KSHV occasionally undergoes the lytic replication phase, which produces KSHV progenies and infects neighboring cells. KSHV genome encodes 80+ open reading frames.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!