Gene Delivery via Octadecylamine-Based Nanoparticles for iPSC Generation from CCD1072-SK Fibroblast Cells.

Curr Issues Mol Biol

Department of Molecular Biology and Genetics, Institute of Science and Technology, Yildiz Technical University, 34220 Istanbul, Türkiye.

Published: November 2024

AI Article Synopsis

  • - This study introduces a new method using octadecylamine-based solid lipid nanoparticles (OCTNPs) to convert human fibroblast cells into induced pluripotent stem cells (iPSCs) for the first time.
  • - OCTNPs efficiently delivered reprogramming factors with an impressive transfection efficiency of 82%, and the resulting iPSCs expressed key markers of pluripotency, confirming their ability to transform into various cell types.
  • - The research showcases OCTNPs as a safer alternative to viral vectors for gene delivery, highlighting their potential for advancing stem cell technology and applications in tissue engineering and personalized medicine.

Article Abstract

This study presents a novel biotechnological approach using octadecylamine-based solid lipid nanoparticles (OCTNPs) for the first-time reprogramming of human CCD1072-SK fibroblast cells into induced pluripotent stem cells (iPSCs). OCTNPs, with an average size of 178.9 nm and a positive zeta potential of 22.8 mV, were synthesized, thoroughly characterized, and utilized as a non-viral vector to efficiently deliver reprogramming factors, achieving a remarkable transfection efficiency of 82.0%. iPSCs were characterized through immunofluorescence, flow cytometry, and RT-qPCR, confirming the expression of key pluripotency markers such as OCT4, SOX2, and KLF4, with alkaline phosphatase activity further validating their pluripotent state. Following this comprehensive characterization, the iPSCs were successfully differentiated into cardiomyocyte-like cells using 5-azacytidine. Our research highlights the innovative application of OCTNPs as a safe and effective alternative to viral vectors, addressing key limitations of iPSC reprogramming. The novel application of OCTNPs for efficient gene delivery demonstrates a powerful tool for advancing stem cell technologies, minimizing risks associated with viral vectors. These findings pave the way for further innovations in biotechnological applications, particularly in tissue engineering and personalized medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593313PMC
http://dx.doi.org/10.3390/cimb46110747DOI Listing

Publication Analysis

Top Keywords

gene delivery
8
ccd1072-sk fibroblast
8
fibroblast cells
8
application octnps
8
viral vectors
8
delivery octadecylamine-based
4
octadecylamine-based nanoparticles
4
nanoparticles ipsc
4
ipsc generation
4
generation ccd1072-sk
4

Similar Publications

Recombinant adeno-associated virus (rAAV) has emerged as one of the best gene delivery vectors for human gene therapy in vivo. However, the clinical efficacy of rAAV gene therapy is often hindered by the host immune response against its transgene products. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is specialised to process peptides presented by class I molecules of major histocompatibility complex.

View Article and Find Full Text PDF

In this chapter, we provide a method for silencing target genes in epidermal cells via RNA interference. Specifically, we describe a protocol for transfection-mediated delivery of small interfering RNA oligonucleotides (siRNA). Functional assays are indispensable to characterize the biological consequences of gene knockdowns, and we also provide a method to analyze alterations in cell adhesion properties, consequent to knockdown of genes involved in this process.

View Article and Find Full Text PDF

Phytonanoparticles have emerged as a promising class of biomaterials for enhancing bone regeneration and osseointegration, offering unique advantages in biocompatibility, multifunctionality, and sustainability. This comprehensive review explores the synthesis, characterization, and applications of phytonanoparticles in bone tissue engineering. The green synthesis approach, utilizing plant extracts as reducing and stabilizing agents, yields nanoparticles with intrinsic bioactive properties that can synergistically promote osteogenesis.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) for nucleic acid delivery often use novel lipids as functional excipients to modulate the biodistribution, pharmacokinetics, pharmacodynamics and efficacy of the nucleic acid. Novel excipients used in pharmaceutical products are subject to heightened regulatory scrutiny and often require data packages comparable to an active pharmaceutical ingredient. Although these regulatory requirements may help to ensure patient safety they also create economic and procedural barriers that can disincentivize innovation and delay clinical investigation.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (rAAV) has emerged as the vector of choice for in vivo gene delivery, with numerous clinical trials underway for the treatment of various human diseases. Utilizing rAAV in gene therapy requires a highly precise quantification method to determine the viral genome titer and further establish the optimal therapeutic dosage for a rAAV product. The conventional single-channel droplet digital PCR (1D ddPCR) method offers only partial information regarding the viral vector genome titer, lacking insights into its integrity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!