AI Article Synopsis

  • Thoracic and abdominal aortic aneurysms have different genetic and clinical characteristics, which can be better understood using single-cell RNA sequencing rather than traditional bulk RNA methods that average gene expression across all cells.* -
  • Analysis of single-cell datasets identified three distinct populations of smooth muscle cells (SMCs) in aortic tissues, with a significantly higher proportion of a unique SMC group in TAA compared to AAA.* -
  • Certain genes linked to extracellular matrix organization and insulin-like growth factor transport were found to be upregulated in TAA SMCs, suggesting these may play a role in the development of TAAs; further studies are needed to explore these pathways.*

Article Abstract

Thoracic and abdominal aortic aneurysms (TAAs and AAAs, respectively) share morphological features but have distinct clinical and hereditary characteristics. Studies using bulk RNA comparisons revealed distinct patterns of gene expression in human TAA and AAA tissues. However, given the summative nature of bulk RNA studies, these findings represent the totality of gene expression without regards to the differences in cellular composition. Single-cell RNA sequencing provides an opportunity to interrogate cell-type-specific transcriptomes. Single cell RNA sequencing datasets from mouse TAA (GSE153534) and AAA (GSE164678 and GSE152583) with respective controls were obtained from the Gene Expression Omnibus. Bioinformatic analysis was performed with the Seurat 4, clusterProfiler, and Connectome software packages (V1.0.1). Immunostaining was performed with standard protocols. Within normal and aneurysmal aortae, three unique populations of cells that express smooth muscle cell (SMC) markers were identified (SMC1, SMC2, and SMCmod). A greater proportion of TAA SMCs clustered as a unique population, SMCmod, relative to the AAA SMCs (38% vs. 10-12%). These cells exhibited transcriptional features distinct from other SMCs, which were characterized by and expression. Genes upregulated in TAA SMCs were enriched for the Reactome terms "extracellular matrix organization" and "insulin-like growth factor (IGF) transport and uptake by IGF binding proteins (IGFBPs)", indicating a role for in TAA pathogenesis. Regulon analysis revealed transcription factors enriched in TAAs and AAAs. Validating these mouse bioinformatic findings, immunostaining demonstrated that both IGFBP2 and TNFRSF11B proteins increased in human TAAs compared to AAAs. These results highlight the unique cellular composition and transcriptional signature of SMCs in TAAs and AAAs. Future studies are needed to reveal the pathogenetic pathways of and .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594343PMC
http://dx.doi.org/10.3390/jcdd11110349DOI Listing

Publication Analysis

Top Keywords

taas aaas
12
gene expression
12
distinct patterns
8
smooth muscle
8
thoracic abdominal
8
abdominal aortic
8
aortic aneurysms
8
features distinct
8
bulk rna
8
cellular composition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!