AI Article Synopsis

Article Abstract

The de-halogenation of highly concentrated halo-organic compounds using Zero Valent Iron entrapped in silica matrices as a catalyst was investigated. This study aimed to evaluate the effectiveness of the Zero Valent Iron-entrapped organically modified silica matrices in transforming highly concentrated hazardous halogenated compounds into environmentally benign materials in the presence of BH. The Zero Valent Iron-entrapped silica gel matrices were synthesized using the sol-gel method. The de-halogenation products were analyzed using high-performance liquid chromatography. The results suggest that the Zero Valent Iron-entrapped silica matrices are effective catalysts in the de-halogenation reaction of halo-organics by BH with 100% efficiency. The current work also highlights the complete de-bromination of harmful wastewater generated by the bromoacetic acid manufacturing industry using Zero Valent Iron-entrapped silica matrices. Therefore, Zero Valent Iron-entrapped silica matrices can be considered potential candidates for the catalytic removal of highly concentrated halo-organic compounds from contaminated water. This technology can play a crucial role in reducing the environmental impact of hazardous substances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593868PMC
http://dx.doi.org/10.3390/gels10110718DOI Listing

Publication Analysis

Top Keywords

silica matrices
24
valent iron-entrapped
20
iron-entrapped silica
16
highly concentrated
12
bromoacetic acid
8
concentrated halo-organic
8
halo-organic compounds
8
silica
7
matrices
7
valent
6

Similar Publications

Sol-gel silica matrices singly doped with Sm and co-doped with ligands phenyl phosphinic acid (PPIA) and trioctylphosphine oxide (TOPO) were fabricated and studied for their structural and spectroscopic behaviour. Structural studies were done by x-ray diffraction (XRD) and Fourier transform infra-red (FTIR) absorption analysis whereas spectroscopic behaviour was studied by ultraviolet - visible (UV-Vis) absorption, photoluminescence (PL) excitation, emission and time-correlated decay analyses. XRD studies exhibit the amorphous nature of the samples and FTIR studies corroborate the presence of the ligands in the silica matrix.

View Article and Find Full Text PDF
Article Synopsis
  • * Direct-on-filter analysis using a partial least squares (PLS) method has recently gained traction for its ability to quantify multiple dust species directly from filters, but it struggles with the inherent heterogeneity of dust samples.
  • * Mixture of experts (MoE) models present a more effective alternative to PLS, improving accuracy in measuring respirable dust mass across various mine types by better handling heterogeneous data and identifying outliers.
View Article and Find Full Text PDF

The aim of this study is to develop molecularly imprinted protein specific to zearalenone (ZEN). The primary idea of our study was to replace the toxic template-ZEN-with a dummy-template-4-hydroxicoumarin-during the synthesis of imprinted proteins (IPs). The choice of the dummy-template was based on the results of comprehensive evaluation that included a combination of blind docking and molecular dynamics simulations.

View Article and Find Full Text PDF
Article Synopsis
  • * The study examines how different concentrations of cadmium (Cd(II)) affect bioluminescence in these biosensors, considering various factors like hydrogel thickness, nutrient availability, and the charge of the hydrogel material.
  • * Results show a consistent relationship between bioluminescence output and free Cd concentration, highlighting how electrostatic interactions and metal accumulation impact the biosensors' metabolic activity and overall effectiveness in detecting environmental changes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!