The rubber elasticity theory has been lengthily applied to several polymeric hydrogel substances and upgraded from idealistic models to consider imperfections in the polymer network. The theory relies solely on hyperelastic material models in order to provide a description of the elastic polymer network. While this is also applicable to polymer gels, such hydrogels are rather characterized by their water content and visco-elastic mechanical properties. In this work, we applied rubber elasticity constitutive models through hyperelastic parameter identification of hydrogels based on their stress-strain response to compression. We further performed swelling experiments and determined the intrinsic properties, i.e., density, of the specimens and their components. Additionally, we estimated their equilibrium swelling and employed it in the swelling-equilibrium theory in order to determine the polymer-solvent interaction parameter of each hydrogel with regard to cross-linking. Our results show that the average mesh size obtained from the rubber elasticity theory can be regarded as a concentration-dependent characteristic length of the hydrogel's network and couples the non-linear elastic response to the specimens' inherent visco-elasticity through hysteresis as a quantifier of energy dissipation under large deformation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11594088 | PMC |
http://dx.doi.org/10.3390/gels10110676 | DOI Listing |
Biomimetics (Basel)
November 2024
Ocean and Maritime Digital Technology Research Division, Korea Research Institute of Ships and Ocean Engineering, Daejeon 34103, Republic of Korea.
Although the Doppler velocity log is widely applied to measure underwater fluid flow, it requires high power and is inappropriate for measuring low flow velocity. This study proposes a fluid flow sensor that utilizes optical flow sensing. The proposed sensor mimics the neuromast of a fish by attaching a phosphor to two pillar structures (A and B) produced using ethylene propylene diene monomer rubber.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Post-Graduation Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), 18052-780, Brazil; Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), 18030-070, Brazil; Mechanical Engineering Faculty (FEM), State University of Campinas (UNICAMP), 13083-970, Brazil; Post-Graduation Program of Biomaterials and Regenerative Medicine (PPGBMR), Surgery Department, (PUC-SP), 18030-070, Brazil.
Wound healing is a complex process involving a sequence of factors that can be disrupted, negatively impacting the quality of life for patients and overburdening healthcare systems. Advanced dressings obtained by electrospinning are highlighted by the optimization of this process, allowing air exchange and protection against microorganisms. Aiming to develop bioactive dressings, this study investigated the physicochemical, mechanical, microbiological, and in vitro biological properties of membranes containing 25 %, 50 %, 75 %, and 90 % copaiba oil (CO) co-electrospun with poly(L-co-D,L-lactic acid) (PLDLA) and natural rubber latex (NR).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom.
Resilin, an elastomeric protein with remarkable physical properties that outperforms synthetic rubbers, is a near-ubiquitous feature of the power amplification mechanisms used by jumping insects. Catapult-like mechanisms, which incorporate elastic energy stores formed from a composite of stiff cuticle and resilin, are frequently used by insects to translate slow muscle contractions into rapid-release recoil movements. The precise role of resilin in these jumping mechanisms remains unclear, however.
View Article and Find Full Text PDFPurpose: The purpose of this laboratory study was to evaluate common materials for isolation and neutralizing agents for hydrofluoric acid (HF). Additionally, surfaces of lithium disilicate ceramic were examined for precipitates after the etching and neutralizing process.
Materials And Methods: The HF permeability of the following isolation agents (n=8) was investigated by positioning them over pH indicator paper under airtight conditions and applying 9% HF: latex rubber dam; elastic plastomer rubber dam; nitrile gloves; latex gloves; liquid rubber dam; Teflon; AZ strip.
Materials (Basel)
November 2024
Faculdade de Tecnologia, FT, Campus I, Universidade de Campinas/UNICAMP, Limeira 13484-332, SP, Brazil.
The aim of this investigation is to determine the effects of hooked-end steel fibers on both the fresh and hardened properties of modified self-compacting concretes (SCC). For this purpose, the steel fibers are associated with other residue contents (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!