The preparation of value-added chemicals from carbon dioxide (CO) can act as a way of reducing the greenhouse gas from the atmosphere. Industrially significant C1 chemicals like methanol (CHOH), formic acid (HCOOH), and formaldehyde (HCHO) can be formed from CO. One sustainable way of achieving this is by connecting the reactions catalyzed by the enzymes formate dehydrogenase (FDH), formaldehyde dehydrogenase (FALDH), and alcohol dehydrogenase (ADH) into a single cascade reaction where CO is hydrogenated to CHOH. For this to be adaptable for industrial use, the enzymes should be immobilized in materials that are extraordinarily protective of the enzymes, inexpensive, stable, and of ultra-large surface area. Metal-organic frameworks (MOFs) meet these criteria and are expected to usher in the much-awaited dispensation of industrial biocatalysis. Unfortunately, little is known about the molecular behaviour of MOF-immobilized FDH, FALDH, and ADH. It is also yet not known which MOFs are most promising for industrial enzyme-immobilization since the field of reticular chemistry is growing exponentially with millions of hypothetical and synthesized MOF structures reported at present. This review initially discusses the properties of the key enzymes required for CO hydrogenation to methanol including available cofactor regeneration strategies. Later, the characterization techniques of enzyme-MOF composites and the successes or lack thereof of enzyme-MOF-mediated CO conversion to CHOH and intermediate products are discussed. We also discuss reported multi-enzyme-MOF systems for CO conversion cognizant of the fact that at present, these systems are the only chance of housing cascade-type biochemical reactions where strict substrate channelling and operational conditions are required. Finally, we delve into future perspectives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-024-05111-1 | DOI Listing |
Crit Rev Anal Chem
January 2025
Department of Chemistry, University of Delhi, New Delhi, India.
Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
DP Technology, Beijing, 100080, China.
Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed.
View Article and Find Full Text PDFSci Rep
January 2025
PKUCare Lu'an Hospital, 046204, Shanxi, China.
Periodontitis, a common chronic inflammatory condition caused by bacteria, leads to loss of attachment, resorption of alveolar bone, and ultimately tooth loss. Therefore, reducing bacterial load and fostering alveolar bone regeneration are essential components in the treatment of periodontitis. In this study, we prepared smaller-sized Ag-Metal Organic Frameworks (Ag@MOF) and loaded with sodium alginate (Alg) hydrogel for periodontitis treatment.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China. Electronic address:
Enhancing the decomposition rate of ammonium perchlorate (AP), the most common oxidizer in solid propellants, is important for improving propellant performance. Metal organic frameworks (MOFs) have been developed as key materials for catalyzing AP decomposition, as they can achieve good dispersion of active sites through in-situ decomposition. Despite having considerable potential, the structural transformation process and catalytic performance of MOFs in AP decomposition are still unclear, which seriously hinders their application in the field of AP decomposition.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China.
Elemental analysis, infrared spectroscopy, and X-ray single crystal diffraction indicated that a novel metal-organic framework (Tb-MOF) designated as 0.5n[Hbpy]·[Tb(dpa)(HO)]·4nHO was synthesized successfully, (where Hdpa = 5-(3, 4-dicarboxy- phenoxy) isophenic acid, bpy = protonated 4,4'-bipyridine). Tb-MOF adopts a 3D network structure based on Tb ions and the (dpa) ligand through µ: η, η, η, η binding modes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!