Rapid synthesis of magnetic FeO/Ag nanocomposite based on a plant-mediated approach and its biological activity.

Environ Sci Pollut Res Int

Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran.

Published: December 2024

The present study described a quick, efficient, and eco-friendly method for producing FeO-Ag nanocomposite (NC) using Mentha pulegium L. plant extract. Ultrasonic-assisted extraction (UAE) was employed to prepare an aqueous extract due to its speed and effectiveness. During the manufacture of FeO-Ag NC, the prepared plant extracts were utilized as naturally occurring stabilizing precursors. The study also employed several methods for characterizing the synthesized NC, including X-ray diffraction patterns, which estimated the mean particle size to be 52 nm using the Deby-Scherrer equation. The successful synthesis of FeO-Ag NC was approved by a broad absorption band from 400 to 425 nm in the absorption spectrum. Subsequently, the samples' antibacterial, antifungal, and antioxidant potentials (FeO NPs, Ag NPs, FeO-Ag NC, and the extract) were investigated. Notably, the NP and NC samples showed higher antibacterial activity than the extract, wherein gram-negative bacteria were more significantly affected than gram-positive bacteria. The FeO-Ag NC had MIC values of 0.062 mg/mL against Staphylococcus aureus and Escherichia coli. The FeO-Ag NC was found to have a significant detrimental impact on the bacterial membranes of E. coli and S. aureus, as evidenced by the quick release of cytoplasmic components such as protein, nucleic acid, and potassium. The results also showed that the extract and FeO-Ag NC samples exhibited strong antioxidant activity. The study recommends further investigation on the application of these metal nanoparticles in the water remediation, agriculture, and food industries due to their strong biological activity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-35614-7DOI Listing

Publication Analysis

Top Keywords

biological activity
8
activity study
8
feo-ag
7
extract
5
rapid synthesis
4
synthesis magnetic
4
magnetic feo/ag
4
feo/ag nanocomposite
4
nanocomposite based
4
based plant-mediated
4

Similar Publications

One-step transformation of CO to methane by Escherichia coli with a synthetic biomethanation module.

Biochem Biophys Res Commun

January 2025

Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; School of Emergency Management, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China. Electronic address:

The biomethanation process is widely recognized as a significant approach to mitigating carbon dioxide emissions while simultaneously generating methane. However, only a few microorganisms that required intricate culturing conditions were identified for biomethanation. Here, Escherichia coli that featured easy cultivation and versatile chassis was genetically modified for biomethanation for the first time.

View Article and Find Full Text PDF

EGFR inhibitors are a class of targeted therapies utilized in the management of certain tumor kinds such as NSCLC and breast cancer. Series of 1,2,3-triazole-Schiff's base hybrids were designed, synthesized, and estimated for their antitumor effect toward breast cancer cells, MCF-7 and MDA-MB-231. The safety and selectivity of the new compounds were tested using normal cell (WI-38).

View Article and Find Full Text PDF

Idesia polycarpa Maxim (IPM) cake meal, a major by-product of oil extraction, is often discarded in large quantities, resulting in considerable waste. This study explored the extraction of IPM polysaccharides (IPMPs) from cake meal using the innovative ultrasonic-assisted three-phase partitioning (UTPP) method, in comparison with conventional techniques, including acid, medium-temperature alkali, chelating agent, and enzyme extraction methods. The IPMP-UT prepared via UTPP method achieved superior extraction efficiency (10.

View Article and Find Full Text PDF

Reactive Brownian Dynamics of Chemically Fueled Droplets: Roles of Attraction and Deactivation Modes.

J Phys Chem B

January 2025

Applied Theoretical Physics - Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.

The self-assembly of biological membraneless organelles can be mimicked by active droplets resulting from chemically fueled microphase separation. However, how the nonequilibrium, transient structure of these active droplets can be controlled through the physicochemical input parameters is not yet well understood. In our work, a chemically fueled two-state chemical reaction and subsequent droplet growth and decay are modeled with a reactive Brownian dynamics simulation in two spatial dimensions.

View Article and Find Full Text PDF

The anti-PD-1 mAb may be further considered along with PGD2 or active molecules that can promote PGD2 synthesis to enhance the anti-tumor immune response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!