Gold nanoparticles (AuNPs) are extensively utilized in biomolecular sensing, photothermal therapy, drug delivery, and various imaging techniques like photoacoustic and fluorescent imaging. Despite their diverse applications, inconsistent findings from previous toxicity studies underscore the critical need for standardized methodologies. This study introduces ten distinct types of AuNPs─cubes, stars, rods, dumbbells, and bipyramids at sizes of 50 and 100 nm, to systematically assess their toxicity under controlled conditions both and . Our findings reveal a clear correlation between cytotoxicity and the morphology, size, incubation duration, and concentration of AuNPs. Anisotropically shaped nanoparticles, such as nanorods, nanodumbbells, and nanobipyramids, tend to exhibit higher cytotoxicity compared to more spherical forms like nanocubes and nanostars. Interestingly, while plasma biochemistry parameters show minimal variation, biodistribution, histopathological alterations, and pharmacokinetics are notably influenced by the shape and size of AuNPs. In most instances, smaller and anisotropic AuNPs that remain in the bloodstream for extended periods are observed. This research offers significant insights into the design of AuNPs with specific morphologies and sizes, particularly for their application in drug delivery systems intravenous injection. These outcomes emphasize the nuanced toxicity profiles of AuNPs, necessitating tailored approaches in preclinical and clinical research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.molpharmaceut.4c00832 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!