Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session3q4qtrpljetee867d9rrg4rosa9kamli): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Per- and polyfluoroalkyl substances (PFAS) are persistent anthropogenic contaminants, some of which are toxic and bioaccumulative. Perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) can form during the atmospheric degradation of precursors such as fluorotelomer alcohols (FTOHs), -alkylated perfluoroalkane sulfonamides (FASAs), and hydrofluorocarbons (HFCs). Since PFCAs and PFSAs will readily undergo wet deposition, snow and ice cores are useful for studying PFAS in the Arctic atmosphere. In this study, 36 PFAS were detected in surface snow around the Arctic island of Spitsbergen during January-August 2019 (i.e., 24 h darkness to 24 h daylight), indicating widespread and chemically diverse contamination, including at remote high elevation sites. Local sources meant some PFAS had concentrations in snow up to 54 times higher in Longyearbyen, compared to remote locations. At a remote high elevation ice cap, where PFAS input was from long-range atmospheric processes, the median deposition fluxes of C-C PFCAs, PFOS and HFPO-DA (GenX) were 7.6-71 times higher during 24 h daylight. These PFAS all positively correlated with solar flux. Together this suggests seasonal light is important to enable photochemistry for their atmospheric formation and subsequent deposition in the Arctic. This study provides the first evidence for the possible atmospheric formation of PFOS and GenX from precursors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636200 | PMC |
http://dx.doi.org/10.1021/acs.est.4c08854 | DOI Listing |
J Environ Qual
December 2024
Energy and Environmental Sustainability Laboratories, Institute for Energy and the Environment, The Pennsylvania State University, University Park, Pennsylvania, USA.
Concerns regarding per- and polyfluoroalkyl substances (PFAS) and their precursors have driven increased research into their sources, impacts, and mitigation strategies, aiming to reduce their prevalence in the environment. While much of this research has centered on known large sources of PFAS (e.g.
View Article and Find Full Text PDFObes Rev
December 2024
Department of Built Environment and Life Sciences, Faculty of Social and Applied Science, Kydd Building, Abertay University, Dundee, UK.
Calorie-restricted diets cause weight loss and can drive type 2 diabetes remission. However, many patients struggle to achieve clinically relevant weight loss, and the reasons are not well understood. Chemical exposure is associated with obesity and type 2 diabetes development, and some evidence from preclinical experiments suggests it can limit the clinical benefits of calorie restriction.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States.
The short-chain (C to C) and ultrashort-chain (C to C) per- and polyfluoroalkyl substances (PFAS) are bioaccumulative, carcinogenic to humans, and harder to remove using current technologies, which are often detected in drinking and environmental water samples. Herein, we report the development of nonafluorobutanesulfonyl (NFBS) and polyethylene-imine (PEI)-conjugated FeO magnetic nanoparticle-based magnetic nanoadsorbents and demonstrated that the novel adsorbent has the capability for highly efficient removal of six different short- and ultrashort-chain PFAS from drinking and environmental water samples. Reported experimental data indicates that by capitalizing the cooperative hydrophobic, fluorophilic, and electrostatic interaction processes, NFBS-PEI-conjugated magnetic nanoadsorbents can remove ∼100% short-chain perfluorobutanesulfonic acid within 30 min from the water sample with a maximum absorption capacity of ∼234 mg g.
View Article and Find Full Text PDFACS Meas Sci Au
December 2024
Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States.
Per- and polyfluoroalkyl substances (PFAS) have become a major focus of research due to their widespread environmental presence and adverse health effects associated with human exposure. PFAS include legacy and emerging structures and are characterized by a range of functional groups and carbon-fluorine chains that vary in length (from fewer than 3 carbons to more than 7 carbons). Research has linked PFAS exposure to an array of health concerns, ranging from developmental and reproductive disorders to immune system impairments and an increased risk of certain cancers.
View Article and Find Full Text PDFWater Res
December 2024
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
Per- and polyfluoroalkyl substances (PFAS) enter the Arctic through long-range transport and local pollution. To date, little is known about their behavior in plant and benthic marine food webs in remote Arctic. In this study, we analyzed the environmental distribution and nutrient transfer of 20 PFAS in soil, sediment, plant and benthic biota samples collected between 2014 and 2016 in Svalbard, Arctic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!