A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-throughput capture of transcription factor-driven epigenome dynamics using PHILO ChIP-seq. | LitMetric

High-throughput capture of transcription factor-driven epigenome dynamics using PHILO ChIP-seq.

Nucleic Acids Res

Waksman Institute of Microbiology, Department of Plant Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.

Published: December 2024

Assessing the dynamics of chromatin features and transcription factor (TF) binding at scale remains a significant challenge in plants. Here, we present PHILO (Plant HIgh-throughput LOw input) ChIP-seq, a high-throughput ChIP-seq platform that enables the cost-effective and extensive capture of TF binding and genome-wide distributions of histone modifications. The PHILO ChIP-seq pipeline is adaptable to many plant species, requires very little starting material (1mg), and provides the option to use MNase (micrococcal nuclease) for chromatin fragmentation. By employing H3K9ac PHILO ChIP-seq on eight Arabidopsis thaliana jasmonic acid (JA) pathway mutants, with the simultaneous processing of over 100 samples, we not only recapitulated but also expanded the current understanding of the intricate interplay between the master TFs MYC2/3/4 and various chromatin regulators. Additionally, our analyses brought to light previously unknown histone acetylation patterns within the regulatory regions of MYC2 target genes in Arabidopsis, which is also conserved in tomato (Solanum lycopersicum). In summary, our PHILO ChIP-seq platform demonstrates its high effectiveness in investigating TF binding and chromatin dynamics on a large scale in plants, paving the way for the cost-efficient realization of complex experimental setups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662648PMC
http://dx.doi.org/10.1093/nar/gkae1123DOI Listing

Publication Analysis

Top Keywords

philo chip-seq
16
chip-seq platform
8
chip-seq
6
philo
5
high-throughput capture
4
capture transcription
4
transcription factor-driven
4
factor-driven epigenome
4
epigenome dynamics
4
dynamics philo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!