Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant, multisystem disorder that manifests with a spectrum of disease including cardiopulmonary complications. HHT is characterised by aberrant signalling via the transforming growth factor β (TGFβ) pathway, with loss of vascular integrity, angiogenesis and vascular dysplasia. The disease has an estimated prevalence of 1 in 5000 persons and the penetrance increases with increasing age. HHT commonly presents with epistaxis and telangiectasia, while visceral arteriovenous malformations are not uncommon. Mutations in the ENG, ACVRL1 and MADH4 genes account for 97% of all HHT cases, and it is recommended that genetic tests are used in combination with the clinical Curaçao criteria to confirm the diagnosis. HHT can be complicated by significant pulmonary vascular disease including pulmonary arteriovenous malformations, pulmonary arterial hypertension and high output cardiac failure. These are associated with substantial morbidity and mortality and therefore timely diagnosis is important to mitigate complications and optimise preventative strategies. This article outlines important advances in our understanding of the pathobiology of HHT and current recommendations regarding the diagnosis and screening of HHT with a specific focus on adult patients with pulmonary vascular disease. Important therapeutic advances, novel therapies on the horizon and unmet needs are also explored.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586239 | PMC |
http://dx.doi.org/10.1002/pul2.70007 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA.
Pulmonary hypertension (PH) increases the mortality of preterm infants with bronchopulmonary dysplasia (BPD). There are no curative therapies for this disease. Lung endothelial carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme of the carnitine shuttle system, is reduced in a rodent model of BPD.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
Department of Vascular Surgery, Zhangzhou Affiliated Hospital of FuJian Medical University, Zhangzhou, Fujian Province, 363000, China.
Background: Thoracic aortic endovascular repair (TEVAR) is the most commonly employed method for treating type B aortic dissection (TBAD). One of the primary challenges in TEVAR is the reconstruction of the left subclavian artery (LSA). Various revascularization strategies have been utilized, including branch stent techniques, fenestration techniques, chimney techniques, and hybrid techniques.
View Article and Find Full Text PDFJ Cardiothorac Vasc Anesth
December 2024
Cardiosurgical Intensive Care Unit, Dupuytren II Hospital, University Teaching Hospital of Limoges, Limoges, France; University of Limoges, Tropical Neuroepidemiology, Institute of Epidemiology and Tropical Neurology, GEIST, Limoges, France.
Cytokine Growth Factor Rev
January 2025
Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India. Electronic address:
Chronic Obstructive Pulmonary Disease (COPD) is a poorly reversible respiratory disorder distinguished by dyspnea, cough, expectoration and exacerbations due to abnormality of airways or emphysema. In this review, we consider the therapeutic potential of targeting Mammalian target of Rapamycin (mTOR) for treating COPD. The mTOR is a highly conserved serine-threonine protein kinase that integrates signals from growth factors and nutrients to control protein synthesis, lipid biogenesis and metabolism.
View Article and Find Full Text PDFTissue Barriers
January 2025
Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the result of an exaggerated inflammatory response triggered by a variety of pulmonary and systemic insults. The lung tissues are comprised of a variety of cell types, including alveolar epithelial cells, pulmonary vascular endothelial cells, macrophages, neutrophils, and others. There is mounting evidence that these diverse cell populations within the lung interact to regulate lung inflammation in response to both direct and indirect stimuli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!