Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The early childhood period is a critical development stage, and experiencing stress during this time may increase the risk of gastrointestinal disorders, including irritable bowel syndrome (IBS). Neonatal maternal separation (NMS) in rodent models has been shown to cause bowel dysfunctions similar to IBS, and 5-HT is considered to be a key regulator regulating intestinal function, but the precise underlying mechanisms remain unclear.
Results: We established a maternal separation stress mouse model to simulate early-life stress, exploring the expression patterns of 5-HT under chronic stress and its mechanisms affecting gut function. We observed a significant increase in 5-HT expression due to NMS, leading to disruptions in intestinal structure and function. However, inhibiting 5-HT reversed these effects, suggesting its potential as a therapeutic target. Furthermore, our research revealed that excess 5-HT in mice with early life stress increased intestinal neural network density and promoted excitatory motor neuron expression. Mechanistically, 5-HT activated the Wnt signaling pathway through the 5-HT receptor, promoting neurogenesis within the intestinal nervous system.
Conclusion: These findings shed light on the intricate changes induced by early life stress in the intestines, confirming the regulatory role of 5-HT in the enteric nervous system and providing potential insights for the development of novel therapies for gastrointestinal disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586501 | PMC |
http://dx.doi.org/10.2147/JIR.S488290 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!