A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microbial enzymatic indices for predicting composting quality of recalcitrant lignocellulosic substrates. | LitMetric

Microbial enzymatic indices for predicting composting quality of recalcitrant lignocellulosic substrates.

Front Microbiol

Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Labelled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, University Cadi Ayyad (UCA), Marrakech, Morocco.

Published: November 2024

Three different enzymes alkaline phosphatase, Urease and Dehydrogenase were measured during this study to monitor the organic matter dynamics during semi-industrial composting of mixture A with 1/3 sludge+2/3 palm waste and mixture B with ½ sludge+1/2 palm waste. The phosphatase activity was higher for Mix-A (398.7 µg PNP g h) than Mix-B (265.3 µg PNP g h), while Mix-B (103.3 µg TPF gd) exhibited greater dehydrogenase content than Mix-A (72.3 µg TPF g d). That could contribute to the dynamic change of microbial activity together with high amounts of carbonaceous substrates incorporated with the lignocellulosic. The gradual increase in the dehydrogenase from the compost Mix-A implies that high lignocellulosic substrate requires gradual buildup of dehydrogenase activity to turn the waste into mature compost. A higher pick of urease with a maximum activity of 151.5 and 122.4 µg NH-N g h were reported, respectively for Mix-A and B. Temperature and pH could also influence the expression of enzyme activity during composting. The machine learning well predicted the compost quality based on NH/NO, C/N ratio, decomposition rate and, humification index (HI). The root mean square error (RMSE) values were 1.98, 1.95, 4.61%, and 4.1 for NH /NO , C/N ratio, decomposition rate, and HI, respectively. The coefficient of determination between observed and predicted values were 0.87, 0.93, 0.89, and 0.94, for the r NH/NO, C/N ratio, decomposition rate, and HI. Urease activity significantly predicted the C/N ratio and HI only. The profile of enzymatic activity is tightly linked to the physico-chemical properties, proportion of lignocellulosic-composted substrates. Enzymatic activity assessment provides a simple and rapid measurement of the biological activity adding understunding of organic matter transformation during sludge-lignocellulosic composting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586200PMC
http://dx.doi.org/10.3389/fmicb.2024.1423728DOI Listing

Publication Analysis

Top Keywords

c/n ratio
16
ratio decomposition
12
decomposition rate
12
activity
9
organic matter
8
palm waste
8
µg pnp
8
pnp mix-b
8
µg tpf
8
nh/no c/n
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!