Two-photon (2P) fluorescence lifetime imaging microscopy (FLIM) was used to track cellular metabolism with drug treatment of auto-fluorescent coenzymes NAD(P)H and FAD in living cancer cells. Simultaneous excitation at 800 nm of both coenzymes was compared with traditional sequential 740/890 nm plus another alternative of 740/800 nm, before and after adding doxorubicin in an imaging time course. Changes of redox states at single cell resolution were compared by three analysis methods: our recently introduced fluorescence lifetime redox ratio (FLIRR: NAD(P)H-a %/FAD-a %), machine-learning (ML) algorithms using principal component (PCA) and non-linear multi-Feature autoencoder (AE) analysis. While all three led to similar biological conclusions (early drug response), the ML models provided statistically the most robust significant results. The advantage of the single 800 nm excitation of both coenzymes for metabolic imaging in above mentioned analysis is demonstrated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700696 | PMC |
http://dx.doi.org/10.1002/jbio.202400426 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!