A Building-Integrated Hybrid Photovoltaic-Thermal (PV-T) Window for Synergistic Light Management, Electricity and Heat Generation.

Adv Sci (Weinh)

Clean Energy Processes (CEP) Laboratory, Department of Chemical Engineering, Imperial College London, SW7 2AZ, London, UK.

Published: November 2024

The installation of common solar panels and collectors in the built environment requires access to significant roof space, which is limited. This motivates the development of high-efficiency, building-integrated technologies that can maximize space utilization and energy provision. In this work, a building-integrated hybrid photovoltaic-thermal window (PVTW) is fabricated and tested, composed of a semi-transparent photovoltaic (PV) layer and a selectively absorptive liquid-based thermal absorber. It is demonstrated that, at 30° inclination, the PVTW can simultaneously generate electricity, with an electrical efficiency of 3.6%, and provide ≈50 °C water, with a thermal efficiency of 10.7%, in the middle of a typical summer day (20th July) in London (maximum ambient temperature ≈34 °C, solar irradiance ≈1100 W m at midday). The water temperature decreases by ≈7 °C, whilst thermal efficiency improves to 17.6% as the inclination angle increases to 90° (vertical); the electrical efficiency reduces marginally (3.3%). Compared to a liquid-based solar-thermal window (STW), the PVTW can generate hot water at ≈10 °C higher temperature and with 10% absolute increase in thermal efficiency when the inclination angle is 60°, plus electricity. The wider uptake of this technology in glass-based urban spaces has the potential to generate significant energy while reducing building temperature management costs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202408057DOI Listing

Publication Analysis

Top Keywords

thermal efficiency
12
building-integrated hybrid
8
hybrid photovoltaic-thermal
8
electrical efficiency
8
inclination angle
8
efficiency
5
photovoltaic-thermal pv-t
4
pv-t window
4
window synergistic
4
synergistic light
4

Similar Publications

Advances in nanomaterials for radiation protection in the aerospace industry: a systematic review.

Nanotechnology

December 2024

CCTS/DFQM, UFSCar - Campus Sorocaba, Rod. João Leme dos Santos km 110 - SP-264 Bairro do Itinga - Sorocaba CEP 18052-780, Sorocaba, 18052-780, BRAZIL.

Nanomaterials stand out for their exceptional properties and innovative potential, especially in applications that protect against space radiation. They offer an innovative approach to this challenge, demonstrating notable properties of radiation absorption and scattering, as well as flexibility and lightness for the development of protective clothing and equipment. This review details the use of polymeric materials, such as polyimides (PIs), which are efficient at attenuating ultraviolet (UV) radiation and atomic oxygen (AO).

View Article and Find Full Text PDF

Ultrathin, Friendly Environmental, and Flexible CsPb(Cl/Br)-Silica Composite Film for Blue-Light-Emitting Diodes.

Langmuir

December 2024

Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.

Due to intrinsic defects in blue-light-emitting perovskite materials, the charge carriers are prone to being trapped by the trap states. Therefore, the preparation of efficient blue-light-emitting perovskite materials remains a significant challenge. Herein, CsPb(Cl/Br) nanocrystal (NCs)@SiO structures were fabricated through hydrolyzing (3-aminopropyl)-triethoxysilane (APTS).

View Article and Find Full Text PDF

An Efficient and Flexible Bifunctional Dual-Band Electrochromic Device Integrating with Energy Storage.

Nanomicro Lett

December 2024

Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China.

Dual-band electrochromic devices capable of the spectral-selective modulation of visible (VIS) light and near-infrared (NIR) can notably reduce the energy consumption of buildings and improve the occupants' visual and thermal comfort. However, the low optical modulation and poor durability of these devices severely limit its practical applications. Herein, we demonstrate an efficient and flexible bifunctional dual-band electrochromic device which not only shows excellent spectral-selective electrochromic performance with a high optical modulation and a long cycle life, but also displays a high capacitance and a high energy recycling efficiency of 51.

View Article and Find Full Text PDF

Pressure-Induced Assembly of Organic Phase-Change Materials Hybridized with Expanded Graphite and Carbon Nanotubes for Direct Solar Thermal Harvesting and Thermoelectric Conversion.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.

Direct harvesting of abundant solar thermal energy within organic phase-change materials (PCMs) has emerged as a promising way to overcome the intermittency of renewable solar energy and pursue high-efficiency heating-related applications. Organic PCMs, however, generally suffer from several common shortcomings including melting-induced leakage, poor solar absorption, and low thermal conductivity. Compounding organic PCMs with single-component carbon materials faces the difficulty in achieving optimized comprehensive performance enhancement.

View Article and Find Full Text PDF

The hot carrier multi-junction solar cell (HCMJC) is an advanced-concept solar cell with a theoretical efficiency greater than 65%. It combines the advantages of hot carrier solar cells and multi-junction solar cells with higher power conversion efficiency (PCE). The thermalization coefficient () has been shown to slow down by an order of magnitude in low-dimensional structures, which will significantly improve PCE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!