There are a number of new format antibody-inspired molecules with multiple antigen binding capabilities in development and clinical evaluation. Here, we describe the impact of the sequence and configuration of a unique bispecific antibody format (termed BYbe) using a panel of four BYbe's and the three IgG1s from which they were derived on their production in a Chinese hamster ovary (CHO) cell expression system. Following transfection and selection, one bispecific antibody format yielded fewer mini-pools in comparison to the other bispecific cell pools. When the top 12 expressing stable mini-pools of all BYbe configurations and sequences were evaluated, both the dsscFv sequence and antibody chain configuration or placement directly impacted productivity. The cell-specific productivity (qP, pg/cell/day) was lower in all BYbe cell pools compared to the IgG1 cell lines. However, when the actual molecules/cell/day produced were considered, three of the four bispecific cell pools outproduced the parental IgG1 cell pools. While gene copy number did not correlate to productivity, mRNA analysis showed that for specific BYbe formats there was a strong correlation with productivity. In summary, we describe how bispecific antibody format configuration impacts the cell line construction process and yield of product from CHO cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.28879DOI Listing

Publication Analysis

Top Keywords

bispecific antibody
16
antibody format
16
cell pools
16
sequence configuration
8
production chinese
8
chinese hamster
8
hamster ovary
8
ovary cho
8
cho cells
8
bispecific cell
8

Similar Publications

Purpose Of Review: Multiple myeloma is a chronic malignancy and with evolving treatment options, understanding the economic burden and cost-effectiveness of therapies is crucial for clinicians and researchers.

Recent Findings: In this, we review the recent approval of Bispecific antibodies and CAR-T for myeloma and their cost implications, including direct and indirect costs. We compare this to current regimens and provide cost comparisons in this review.

View Article and Find Full Text PDF

Targeting immune checkpoints on myeloid cells: current status and future directions.

Cancer Immunol Immunother

January 2025

Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China.

Myeloid cells accumulate extensively in most tumors and play a critical role in immunosuppression of the tumor microenvironment (TME). Like T cells, myeloid cells also express immune checkpoint molecules, which induce the immunosuppressive phenotype of these cells. In this review, we summarize the tumor-promoting function and immune checkpoint expression of four types of myeloid cells: macrophages, neutrophils, dendritic cells, and myeloid-derived suppressor cells, which are the main components of the TME.

View Article and Find Full Text PDF

pH-Responsive Polyethylene Glycol Engagers for Enhanced Brain Delivery of PEGylated Nanomedicine to Treat Glioblastoma.

ACS Nano

January 2025

Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.

The blood-brain barrier (BBB) remains a major obstacle for effective delivery of therapeutics to treat central nervous system (CNS) disorders. Although transferrin receptor (TfR)-mediated transcytosis is widely employed for brain drug delivery, the inefficient release of therapeutic payload hinders their efficacy from crossing the BBB. Here, we developed a pH-responsive anti-polyethylene glycol (PEG) × anti-TfR bispecific antibody (pH-PEG engager) that can complex with PEGylated nanomedicine at physiological pH to trigger TfR-mediated transcytosis in the brain microvascular endothelial cells, while rapidly dissociating from PEGylated nanomedicine at acidic endosomes for efficient release of PEGylated nanomedicine to cross the BBB.

View Article and Find Full Text PDF

Diabetic macular edema (DMO) poses a significant risk to vision, primarily caused by the leakage of retinal vessels. Traditional treatments involve anti-vascular endothelial growth factor (VEGF) agents and corticosteroids, though responses vary, necessitating frequent treatments. This retrospective study at a London-based tertiary eye hospital evaluates the efficacy of faricimab, a bispecific antibody inhibiting angiopoietin 2 (Ang-2) and VEGF-A, in treating DMO.

View Article and Find Full Text PDF

Systemic light chain (AL) amyloidosis is a rare clonal plasma cell disorder characterized by the production of amyloidogenic immunoglobulin light chains, which causes the formation and deposition of amyloid fibrils, leading to multi-organ dysfunction. Current treatment is directed at the underlying plasma cell clone to achieve a profound reduction in the monoclonal free light chain production. The standard-of-care first-line therapy is a combination of daratumumab, cyclophosphamide, bortezomib and dexamethasone (D-VCd regimen), resulting in high rates of haematological and organ responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!