A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metamaterial-Enabled Hybrid Receive Coil for Enhanced Magnetic Resonance Imaging Capabilities. | LitMetric

Metamaterial-Enabled Hybrid Receive Coil for Enhanced Magnetic Resonance Imaging Capabilities.

Adv Sci (Weinh)

Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA.

Published: November 2024

Magnetic resonance imaging (MRI) relies on high-performance receive coils to achieve optimal signal-to-noise ratio (SNR), but conventional designs are often bulky and complex. Recent advancements in metamaterial technology have led to the development of metamaterial-inspired receive coils that enhance imaging capabilities and offer design flexibility. However, these configurations typically face challenges related to reduced adaptability and increased physical footprint. This study introduces a hybrid receive coil design that integrates an array of capacitively-loaded ring resonators directly onto the same plane as the coil, preserving its 2D layout without increasing its size. Both the coil and metamaterial are individually non-resonant at the targeted Larmor frequency, but their mutual coupling induces a resonance shift, achieving a frequency match and forming a hybrid structure with enhanced SNR. Experimental validation on a 3.0 T MRI platform shows that this design allows for adjustable trade-offs between peak SNR and penetration depth, making it adaptable for various clinical imaging scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202410907DOI Listing

Publication Analysis

Top Keywords

hybrid receive
8
receive coil
8
magnetic resonance
8
resonance imaging
8
imaging capabilities
8
receive coils
8
metamaterial-enabled hybrid
4
receive
4
coil
4
coil enhanced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!