The logistic regression model for a binary outcome with a continuous covariate can be expressed equivalently as a two-sample density ratio model for the covariate. Utilizing this equivalence, we study a change-point logistic regression model within the corresponding density ratio modeling framework. We investigate estimation and inference methods for the density ratio model and develop maximal score-type tests to detect the presence of a change point. In contrast to existing work, the density ratio modeling framework facilitates the development of a natural Kolmogorov-Smirnov type test to assess the validity of the logistic model assumptions. A simulation study is conducted to evaluate the finite-sample performance of the proposed tests and estimation methods. We illustrate the proposed approach using a mother-to-child HIV-1 transmission data set and an oral cancer data set.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bimj.202300214 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!