AI Article Synopsis

  • The study examined how elevated core temperature from heat stress affects aerobic exercise capacity in highly trained athletes compared to just heat exposure without increased core temperature.
  • Seven athletes went through two conditions: one involving elevated core and skin temperatures (HYP) and the other with only elevated skin temperature (SKIN), followed by tasks to induce mental fatigue.
  • Results showed that athletes had shorter exercise time to exhaustion in the HYP condition (about 8.9 minutes) compared to SKIN (around 12.6 minutes), indicating that both high core temperature and mental fatigue negatively impact performance in hot conditions.

Article Abstract

The purpose of this study was to investigate the effects of elevated core temperature by exposure to heat stress vs. heat exposure without elevated core temperature (mean skin temperature only) in addition to mental fatigue on aerobic exercise capacity in the heat. Seven highly trained athletes completed two experimental conditions: elevation in core and skin temperatures (hyperthermia: HYP), and skin temperatures (SKIN). Participants performed the AX-Continuous Performance Task and Stroop Task to induce mental fatigue during a warm water immersion at 40 °C (HYP) and a passive seated heat exposure in a climatic chamber at 35 °C and 60% relative humidity (SKIN) for 45 min before exercise. Thereafter, participants performed running trial at 80% maximal oxygen uptake until voluntary exhaustion in the same chamber as the SKIN. Exercise time to exhaustion was significantly shorter in the HYP trial (538 ± 200 s) than in the SKIN trial (757 ± 324 s). Rectal temperature at the end of tasks in the HYP trial increased by 0.86 ± 0.26℃ and was significantly higher (37.69 ± 0.18℃) than that of the SKIN trial (36.96 ± 0.13℃), albeit no significant differences in mean skin temperature. Self-reported mental fatigue using visual analog scale was significantly higher after tasks in both trials, but no significant difference between trials was found. Throughout the trial, salivary cortisol concentration and perceptual responses were not affected by hyperthermia. This study demonstrated that a combination of high core temperature and mean skin temperature, and mental fatigue limit aerobic exercise capacity in highly trained athletes in hot environments compared with heat exposure without an elevation of core temperature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587623PMC
http://dx.doi.org/10.1186/s40101-024-00377-0DOI Listing

Publication Analysis

Top Keywords

core temperature
20
mental fatigue
20
elevated core
12
aerobic exercise
12
exercise capacity
12
highly trained
12
trained athletes
12
heat exposure
12
skin temperature
12
skin
10

Similar Publications

Purpose: Hypothermia occurs when core body temperature drops below 35 °C. The purpose of this review was to identify and analyze studies on the topic of hypothermia from an immunohistochemical perspective to determine robust markers of fatal hypothermia.

Methods: This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines.

View Article and Find Full Text PDF

Cold exposure reinstates NAD levels and attenuates hepatocellular carcinoma.

Cell Stress

December 2024

Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO) Madrid, ES28029 Spain.

Cold exposure has been historically used for medicinal purposes, but its benefits and associated mechanisms in mammalian organisms still remain unclear. Here, we explore the chemoprotective properties of cold temperature using a mouse model of hepatocellular carcinoma (HCC) that recapitulates several human features. Chronic cold exposure is shown to prolong lifespan in diseased mice, enhance liver health, and suppress the development of aggressive HCC, preventing hepatocellular hypertrophy, high-grade oval cell hyperplasia, liver steatosis, and aberrant hepatocyte hyperproliferation.

View Article and Find Full Text PDF

Pseudomorphic Transformation in Nanostructured Thiophene-Based Materials.

ACS Nano

January 2025

Consiglio Nazionale delle Ricerche (CNR) - Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129 Bologna, Italy.

This study reveals the capability of nanostructured organic materials to undergo pseudomorphic transformations, a ubiquitous phenomenon occurring in the mineral kingdom that involves the replacement of a mineral phase with a new one while retaining the original shape and volume. Specifically, it is demonstrated that the postoxidation process induced by HOF·CHCN on preformed thiophene-based 1D nanostructures preserves their macro/microscopic morphology while remarkably altering their electro-optical properties by forming a new oxygenated phase. Experimental evidence proves that this transformation proceeds via an interface-coupled dissolution-precipitation mechanism, leading to the growth of a porous oxidized shell that varies in thickness with exposure time, enveloping the pristine smooth core.

View Article and Find Full Text PDF

New insights in the low-temperature-dependent formation of amorphous titania-coated magnetic polydopamine nanocomposites for the adsorption of methylene blue.

Sci Rep

January 2025

Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guian, 550025, China.

Removal of accumulated dyes from the environment water bodies is essential to prevent further harm to humans. The development and design of new alternative nanoadsorbents that can conveniently, quickly, and efficiently improve the adsorption and removal efficiency of dyes from wastewater remains a huge challenge. An amorphous TiO with a magnetic core-shell-shell structure (FeO@PDA@a-TiO, denoted as FPaT) was constructed through a series of steps.

View Article and Find Full Text PDF

Prehospital management of exertional heat stroke (EHS) consists of monitoring rectal temperature (T) while aggressively cooling via cold water immersion. Recent recommendations suggest using central nervous system (CNS) dysfunction to determine cessation of cooling when T is not available. We examined cognitive responses of two runners with EHS after a road race.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!