Background: It is generally accepted that nuclear genes in eukaryotes are located independently on chromosomes and expressed in a monocistronic manner. However, accumulating evidence suggests a more complex landscape of gene structure and transcription. Ganoderma lingzhi, a model medicinal fungus, currently lacks high-quality genome annotation, hindering genetic studies.
Results: Here, we reported a golden annotation of G. lingzhi, featuring 14,147 high-confidence genes derived from extensive manual corrections. Novel characteristics of gene structure and transcription were identified accordingly. Notably, non-canonical splicing sites accounted for 1.99% of the whole genome, with the predominant types being GC-AG (1.85%), GT-AC (0.05%), and GT-GG (0.04%). 1165 pairs of genes were found to have overlapped transcribed regions, and 92.19% of which showed opposite directions of gene transcription. A total of 5,412,158 genetic variations were identified among 13 G. lingzhi strains, and the manually corrected gene sets resulted in enhanced functional annotation of these variations. More than 60% of G. lingzhi genes were alternatively spliced. In addition, we found that two or more protein-coding genes (PCGs) can be transcribed into a single RNA molecule, referred to as polycistronic genes. In total, 1272 polycistronic genes associated with 2815 PCGs were identified.
Conclusions: The widespread presence of polycistronic genes in G. lingzhi strongly complements the theory that polycistron is also present in eukaryotic genomes. The extraordinary gene structure and transcriptional activity uncovered through this golden annotation provide implications for the study of genes, genomes, and related studies in G. lingzhi and other eukaryotes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590231 | PMC |
http://dx.doi.org/10.1186/s12915-024-02073-y | DOI Listing |
Biotechnol J
January 2025
School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland.
Adeno-associated virus (AAV) is a versatile viral vector technology that can be engineered for specific functionality in vaccine and gene therapy applications. One of the major challenges in AAV production is the need for a GMP-ready platform-based approach to downstream processing, as this would lead to a standardized method for multiple products. Chromatography has huge potential in AAV purification, as it is a scalable method that would enable manufacturing to a high degree of purity, potency, and consistency.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway.
Unlabelled: a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in .
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China.
Unlabelled: Mercury pollution is a kind of heavy metal pollution with great harm and strong toxicity which exists worldwide. Some microorganisms can convert highly toxic methylmercury into inorganic mercury compounds with significantly reduced toxicity. This is an effective means of methylmercury pollution remediation.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
Unlabelled: Type IV pili (T4P) are important virulence factors that allow bacteria to adhere to and rapidly colonize their hosts. T4P are primarily composed of major pilins that undergo cycles of extension and retraction and minor pilins that initiate pilus assembly. Bacteriophages use T4P as receptors and exploit pilus dynamics to infect their hosts.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India.
Plant growth-promoting rhizobacterium Sp7 utilizes fructose efficiently via a fructose phosphotransferase system (Fru-PTS). Its genome encodes two putative Fru-PTS, each consisting of FruB (EIIA), FruK (Pfk), and FruA (EIIBC) proteins. We compared the proteomes of Sp7 grown with malate or fructose as sole carbon source, and noticed upregulation of the constituent proteins of Fru-PTS1 only on fructose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!