Background: Microbial prodigiosin pigment has been proposed as a promising biomolecule having an antibacterial, immunosuppressive, antimalarial, antineoplastic, and anticancer activities. The good outcome originates from getting natural pigment, which has many medical applications.
Results: In this investigation, prodigiosin (PG) was extracted, characterized by UV-visible spectroscopy, thin-layer chromatography, mass spectroscopy, Fourier-transform infrared spectroscopy, and tested in various medical applications as an antibacterial, antioxidant, antibiofilm, anticancer, and wound healing agent at different concentrations. Antibacterial activity of PG pigment was shown against both Gram-positive and Gram-negative bacterial strains. Enterococcus faecalis was the most severely impacted, with minimum inhibitory value of 3.9 µg/mL. The formed biofilm by Pseudomonas aeruginosa was suppressed by 58-2.50% at prodigiosin doses ranging from 1000 to 31.25 µg/mL, respectively. The half-maximal inhibitory concentration (IC) of 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) free radical was 74.18 ± 23.77 µg/mL. At 100 µg/mL concentration, OK482790 prodigiosin had no harmful effect on normal skin cells and exhibited mild wound healing properties. Additionally, molecular docking simulations confirmed the prodigiosin's interactions with target proteins, including epidermal growth factor receptor tyrosine kinase (EGFR-TK, PDB ID: 1M17), peptide deformylase from E. faecalis (PDB ID: 2OS1), acidic fibroblast growth factor (FGF-1, PDB ID: 3K1X), PA14_16140 protein from P. aeruginosa (PDB ID: 8Q8O), and human peroxiredoxin 5 (PDB ID: 1HD2) for explaining the anticancer, antibacterial, wound healing, antibiofilm, and antioxidant activities, respectively. Prodigiosin had favorable binding affinities and putative modes of action across various therapeutic domains.
Conclusion: This study pioneers the use of prodigiosin as a natural alternative to synthetic medicine since it fights germs, heals wounds, is antioxidant, and reduces biofilm formation.
Clinical Trial Number: Not applicable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587630 | PMC |
http://dx.doi.org/10.1186/s12866-024-03634-5 | DOI Listing |
Orthopadie (Heidelb)
December 2024
Klinik für Orthopädie und Unfallchirurgie, Zentralklinik Bad Berka, Robert-Koch-Allee 9, 99438, Bad Berka, Deutschland.
Excessive consumption of nicotine and alcohol has been proven to effect the organ system. Both stimulants are consumed in the population to a not insignificant extent. The question therefore arises as to what effect the consumption of nicotine and alcohol has on the complication rates and to what extent this should be reduced or stopped before performing a joint arthroplasty? A literature search was carried out to answer these questions.
View Article and Find Full Text PDFNat Prod Res
December 2024
Laboratory of Advanced Materials Chemistry, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
For the first time, critical review on R. Br. (Boraginaceae) is established.
View Article and Find Full Text PDFNat Prod Res
December 2024
Department of Zoology, GC University, Lahore, Pakistan.
Inhibiting angiogenesis with plant-derived bioactive compounds can inhibit tumour progression. Antiangiogenic potential of was analysed by preparing and analysing ethanolic extracts of by GC-MS and HPLC to identify bioactive components. In-vivo blood vessel formation assays in mice and chorioallantoic membrane assays (CAM) in eggs were employed to assess the antiangiogenic effects.
View Article and Find Full Text PDFLasers Med Sci
December 2024
Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiangwangmiao Street 12, Xuanwu District, Nanjing, Jiangsu Province, 210042, China.
Traumatic scars negatively impact the patient's quality of life. Fractional 1064 nm Nd: YAG picosecond laser improves scars. However, the effect varies among individuals.
View Article and Find Full Text PDFCommun Biol
December 2024
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
Epithelial-to-mesenchymal transition (EMT) is a conserved cellular process critical for embryogenesis, wound healing, and cancer metastasis. During EMT, cells undergo large-scale metabolic reprogramming that supports multiple functional phenotypes including migration, invasion, survival, chemo-resistance and stemness. However, the extent of metabolic network rewiring during EMT is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!