Effective waste management is essential for achieving sustainability, yet challenges persist in resource recovery and mitigating environmental impacts. The environmental-resource interacting attribute framework quantifies these difficulties in waste processes, revealing attribute bias and guiding treatment pathway selection. Here we analyze twelve waste categories and reveal significant variability in recyclability and environmental impact. For instance, copper slag demonstrates a range of 25.25-285.46 bit (the unit is the inverse of information entropy), indicating greater recyclability, while downcycling pathways exhibit the highest values (up to 285.46 bit), emphasizing resource recovery (up to 77.45° while degree indicates bias). It proposes a classification of waste based on environmental-resource interacting attribute values, prioritizing materials with high recovery potential to prevent irreversible losses. The framework offers insights into waste recyclability and environmental burdens, serving as an alternative tool for advancing waste management towards a circular economy and reducing carbon emissions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589759PMC
http://dx.doi.org/10.1038/s41467-024-54602-6DOI Listing

Publication Analysis

Top Keywords

waste management
12
environmental-resource interacting
12
interacting attribute
12
resource recovery
8
recyclability environmental
8
waste
6
fostering waste
4
management environmental-resource
4
attribute
4
attribute effective
4

Similar Publications

In this systematic review, advancements in plastic recycling technologies, including mechanical, thermolysis, chemical and biological methods, are examined. Comparisons among recycling technologies have identified current research trends, including a focus on pretreatment technologies for waste materials and the development of new organic chemistry or biological techniques that enable recycling with minimal energy consumption. Existing environmental and economic studies are also compared.

View Article and Find Full Text PDF

Papermaking wastewater consists of a sizable amount of industrial wastewater; hence, real-time access to precise and trustworthy effluent indices is crucial. Because wastewater treatment processes are complicated, nonlinear, and time-varying, it is essential to adequately monitor critical quality indices, especially chemical oxygen demand (COD). Traditional models for predicting COD often struggle with sensitivity to parameter tuning and lack interpretability, underscoring the need for improvement in industrial wastewater treatment.

View Article and Find Full Text PDF

Toward Sustainable Polydienes.

J Am Chem Soc

January 2025

Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.

The sustainable management of polydiene waste represents a formidable challenge in the realm of polymer chemistry, given the extensive industrial utilization of polydienes due to their superior elastomeric properties. This comprehensive Perspective addresses the multifaceted obstacles hindering efficient recycling of polydienes, encompassing environmental concerns, technical limitations, and economic disincentives. We systematically dissect the influence of polydienes' chemical structures on their recyclability, tracing the evolution of polydiene utilization and disposal practices while assessing the current landscape of waste management strategies.

View Article and Find Full Text PDF

A wide range of pollutants, including heavy metals, endocrine-disrupting chemicals (EDCs), residual pesticides, and pharmaceuticals, are present in various water systems, many of which strongly drive the proliferation and dissemination of antimicrobial resistance genes (ARGs), heightening the antimicrobial resistance (AMR) crisis and creating a critical challenge for environmental and health management worldwide. This study addresses the impact of anthropogenic pollutants on AMR through an extensive analysis of ARGs and mobile genetic elements (MGEs) in urban wastewater, source water, and drinking water supplies in India. Results indicated that bla and bla were the dominant ARGs across all water systems, underscoring the prevalence and dominance of resistance against β-lactam antibiotics.

View Article and Find Full Text PDF

Investigating macro marine litter and beach cleanliness along Southern Vietnam beaches.

Mar Pollut Bull

January 2025

Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea. Electronic address:

Plastic contamination is a major issue for marine ecosystems, with macro-litter posing a growing threat globally. This study assesses macro-marine litter on Vung Tau beaches, Southern Vietnam, providing baseline data for marine litter pollution and identifying critical action plans for plastic control. Survey results showed litter density ranging from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!