AI Article Synopsis

  • Defects in two-dimensional materials like MoSe affect their physical and chemical properties, making atomic-scale characterization crucial.
  • Researchers utilized spectroscopic imaging scanning tunneling microscopy to investigate how Mo antisite and V vacancy defects behave differently depending on their charge states in MoSe bilayers on graphene.
  • The study found that these defects can generate a local magnetic moment and could lead to advancements in material engineering and spin-based applications.

Article Abstract

Defects in two-dimensional materials profoundly impact the physicochemical properties of the systems, whose characterization is highly desirable at the atomic scale. Here, using spectroscopic imaging scanning tunneling microscopy, we elucidate the vibrational and magnetic states of Mo antisite and V vacancy with different charge states embedded in ultrathin MoSe bilayers supported on graphene substrate. Stringent vibronic states with multimode coupling are resolved on the defects. The spectral intensities are tunable with the electron tunneling rates and well-reproduced by theoretical modeling. Moreover, first-principles calculations suggest that the defects host a local magnetic moment of 2 μ in their neutral state, which is directly confirmed by our spin-flip inelastic electron tunneling spectroscopy. Our study deepens the understanding of defect properties and paves the way of defect-engineering material functionalities and spin-catalytic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c11075DOI Listing

Publication Analysis

Top Keywords

vibrational magnetic
8
magnetic states
8
electron tunneling
8
states
4
states point
4
defects
4
point defects
4
defects bilayer
4
bilayer mose
4
mose defects
4

Similar Publications

Spectroscopic Signatures of Phonon Character in Molecular Electron Spin Relaxation.

ACS Cent Sci

December 2024

Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.

Spin-lattice relaxation constitutes a key challenge for the development of quantum technologies, as it destroys superpositions in molecular quantum bits (qubits) and magnetic memory in single molecule magnets (SMMs). Gaining mechanistic insight into the spin relaxation process has proven challenging owing to a lack of spectroscopic observables and contradictions among theoretical models. Here, we use pulse electron paramagnetic resonance (EPR) to profile changes in spin relaxation rates ( ) as a function of both temperature and magnetic field orientation, forming a two-dimensional data matrix.

View Article and Find Full Text PDF

 - a large-scale dataset of 3D medical shapes for computer vision.

Biomed Tech (Berl)

December 2024

Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen (AöR), Essen, Germany.

Objectives: The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models).

View Article and Find Full Text PDF

Magnetic supported ionic liquids are a unique subclass of ionic liquids that possess the ability to respond to external magnetic fields, combining the advantageous properties of traditional ILs with this magnetic responsiveness. A novel magnetic ionic nanocatalyst of FeO@SiO@CPTMS-DTPA was prepared by anchoring an ionic liquid, CPTMS-DTPA, onto the surface of silica-modified FeO. The morphology, chemical structure and magnetic property of the magnetic ionic nanocatalyst structure was characterized using scanning electron microscopy, X-ray powder diffraction, Fourier transformation infrared spectroscopy, vibrating sample magnetometer, and thermogravimetric analysis.

View Article and Find Full Text PDF

A novel nanocomposite magnetic hydrogel was synthesized based on κ-carrageenan, acrylic acid, and activated carbon as an absorbent for removing heavy metal ions from aqueous solution. FT-IR spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibration sample magnetometer (VSM) were employed to confirm the structure of the nanocomposite hydrogels. The effects of contact time, pH, particle size, temperature, and metal ion concentration on the metal ion adsorption were investigated.

View Article and Find Full Text PDF

All-in-one microfluidic immunosensing device for rapid and end-to-end determination of salivary biomarkers of cardiovascular diseases.

Biosens Bioelectron

December 2024

School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315200, China. Electronic address:

Routine screening for cardiovascular diseases (CVDs) through point-of-care assays for at-home or community-based testing of salivary biomarkers can significantly improve patient outcomes. However, its translatability has been hindered by a dearth of biosensing devices that streamline assay procedures for rapid biomarker quantitation. To address this challenge through end-to-end engineering, we developed an in-house, all-in-one microfluidic immunosensing device that integrates on-chip vibration-enhanced incubation, magnetic-assisted separation using immune magnetic bead probes, and colorimetric readout via absorbance measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!