A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanism of rhamnolipid promoting the degradation of polycyclic aromatic hydrocarbons by gram-positive bacteria-Enhance transmembrane transport and electron transfer. | LitMetric

Mechanism of rhamnolipid promoting the degradation of polycyclic aromatic hydrocarbons by gram-positive bacteria-Enhance transmembrane transport and electron transfer.

J Biotechnol

School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, Shaanxi Province 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, No.13 Yanta Road, Xi'an, Shaanxi Province 710055, China.

Published: January 2025

In this study, the Gram-positive bacterium Bacillus licheniformis T5 was utilized to investigate the impact of rhamnolipid on cell membrane and cell wall, as well as enzyme activity and electron transfer rate within cells. Results indicated that at the optimal concentration of rhamnolipid (200 mg/L), the cell membrane protein and cell wall peptidoglycan content of T5 decreased significantly. Infrared spectrum analysis and ultrastructure observations confirmed these findings, revealing noticeable changes in cell morphology in the presence of rhamnolipid. Specifically, cell folds increased, cell wall texture loosened, thickness decreased sharply, transmembrane channels appeared, and the plasma wall slightly separated. These alterations likely contributed to the increased permeability of the cell membrane. Furthermore, rhamnolipid accelerated the electron transfer rate in T5 cells, enhancing oxidoreductase activity. This study elucidates the mechanism through which rhamnolipid promotes the degradation of polycyclic aromatic hydrocarbons by Gram-positive bacteria, focusing on transmembrane transport and catalytic metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2024.11.010DOI Listing

Publication Analysis

Top Keywords

electron transfer
12
cell membrane
12
cell wall
12
mechanism rhamnolipid
8
degradation polycyclic
8
polycyclic aromatic
8
aromatic hydrocarbons
8
hydrocarbons gram-positive
8
transmembrane transport
8
cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!