Math Biosci
Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China. Electronic address:
Published: January 2025
In this paper, we develop a reaction-diffusion model with negative toxicant-taxis that incorporates spatiotemporally inhomogeneous toxicant input to investigate the impact of toxicants on the competitive dynamics of two species in a polluted aquatic environment. Here the negative toxicant-taxis models the evasive movement of avoiding toxicants by species. We establish the global well-posedness of the model, analyze the existence and stability of spatially homogeneous steady states, and derive sufficient conditions for species extinction and coexistence. Through linear stability analysis, we identify sufficient conditions on model parameters that destabilize spatially homogeneous steady states under spatiotemporally uniform toxicant input. Numerical experiments reveal the influence of key toxicant-related factors (input rate, taxis intensity, and diffusivity) on competition outcomes and species distributions. Notably, strong negative toxicant-taxis can induce spatial aggregation and segregation patterns between the species and the toxicant under uniform toxicant input. Our findings suggest that toxicant-taxis may promote population persistence and coexistence, particularly when the toxicant input is not uniform in space and time and the toxicant does not diffuse fast (i.e. weak diffusivity). However, strong toxicant diffusion can diminish the impact of taxis, adversely affecting population persistence and species coexistence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mbs.2024.109341 | DOI Listing |
Nat Commun
January 2025
Department of Electrical Engineering, University of California, Irvine, CA, USA.
Complementary transistors are critical for circuits with compatible input/output signal dynamic range and polarity. Organic electronics offer biocompatibility and conformability; however, generation of complementary organic transistors requires introduction of separate materials with inadequate stability and potential for tissue toxicity, limiting their use in biomedical applications. Here, we discovered that introduction of source/drain contact asymmetry enables spatial control of de/doping and creation of single-material complementary organic transistors from a variety of conducting polymers of both carrier types.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, 518172 Shenzhen, China.
Drug-induced liver injury (DILI) is a major challenge in drug development, often leading to clinical trial failures and market withdrawals due to liver toxicity. This study presents StackDILI, a computational framework designed to accelerate toxicity assessment by predicting DILI risk. StackDILI integrates multiple molecular descriptors to extract structural and physicochemical features, including the constitution, pharmacophore, MACCS, and E-state descriptors.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Civil and Environmental Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran.
Luffa is a robust, renewable biomaterial known for its low mass, high specific strength, and non-toxicity, making it ideal for composite development. This study modified luffa to create the LF@ppy@LDH nanocomposite, combining luffa, polypyrrole, and layered double hydroxides to efficiently remove ibuprofen from water. Techniques like FE-SEM, EDX, FTIR, and XRD confirmed the modification.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
The population has increased in recent decades, and as a result, the increase in urban wastewater has led to many environmental problems. In this study, the environmental impacts of the Southern Tehran treatment plant were assessed via life cycle assessment (LCA) (SimaPro 9.4.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China. Electronic address:
Developing an efficient and economical indoor air purification system for catalytic decomposition of formaldehyde is of great significance. In this work, an indoor air conditioner capable of purifying formaldehyde was designed by directly integrating defective WO/TiO nanotube catalytic fin, with both thermal conductivity and gas-phase photoelectrocatalytic (GPEC) properties, onto the condenser component. The electrochemical treatment of the catalytic fin introduced a substantial number of oxygen vacancies, resulting in a significant increase in carrier concentration and mobility to the semi-metallic level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.