A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MEHP induced mitochondrial damage by promoting ROS production in CIK cells, leading to apoptosis, autophagy, cell cycle arrest. | LitMetric

MEHP induced mitochondrial damage by promoting ROS production in CIK cells, leading to apoptosis, autophagy, cell cycle arrest.

Comp Biochem Physiol C Toxicol Pharmacol

Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China. Electronic address:

Published: February 2025

Although Mono (2-ethylhexyl) phthalate (MEHP) is a metabolite of Di (2-ethylhexyl) phthalate (DEHP), it has been confirmed to exhibit stronger biological toxicity than DEHP. Mitochondrial dynamic homeostasis and normal mitochondrial function regulate numerous physiological and pathological processes. However, it remains unclear whether MEHP triggers apoptosis, autophagy, and cell cycle arrest in grass carp kidney (CIK) cells by causing mitochondrial damage. Here, we established a MEHP dose-dependent exposure models in CIK cells and treated them with NAC. The results demonstrated that MEHP promoted ROS production and decreased antioxidant enzyme activities in CIK cells in a concentration-dependent manner. MEHP destroyed mitochondrial homeostasis and mitochondrial function in CIK cells, manifested by decreasing mitochondrial membrane potential (MMP), down-regulating gene expression of fusion division genes including MFN1, MFN2, CLPP, DRP1, OPA1, and MFF, and reducing OXPHOS complex enzyme protein level including COXI, COXII, COXIII, COXIV, and COXV. In addition, MEHP treatment not only can increase the level of Cyt-c, Atg12, Atg13, Atg14, Beclin1, ULK1, LC3-II, Caspase3, Caspase9, and Bax, but also can decrease the level of Bcl2, p62, CyclinB, CyclinD, and CyclinE in a concentration-dependent manner, which resulted in apoptosis, autophagy and cell cycle arrest. Furthermore, MEHP dose-dependently nduced downregulation gene expression of immunoglobulins and antimicrobial peptides (Hepcidin, β-defensin, LEAP2). However, NAC treatment could significantly reverse the above changes and alleviate CIK cells damage caused by exposure to MEHP. This study has expanded our understanding about molecular mechanisms of MEHP toxicity in aquatic animals and provided a reference for comparative medicine research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2024.110064DOI Listing

Publication Analysis

Top Keywords

cik cells
24
apoptosis autophagy
12
autophagy cell
12
cell cycle
12
cycle arrest
12
mehp
10
mitochondrial damage
8
ros production
8
2-ethylhexyl phthalate
8
mitochondrial function
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!