Enteropathogenic Escherichia coli (EPEC) is a gastrointestinal pathogen that affects individuals of all age groups, with infections ranging from subclinical colonization to acute or persistent diarrhea. The bacterium's ability to cause diarrhea depends on the locus of enterocyte effacement (LEE) pathogenicity island. Although regulation of the LEE has been systematically characterized, until the last decade, studies mainly focused on its transcriptional control. Posttranscriptional regulation of the LEE continues to be an underappreciated and understudied area of gene regulation. In the past few years, multiple reports have shed light on the roles of RNA-binding proteins, such as Hfq and CsrA, that modulate virulence in EPEC. This study was undertaken to explore the role of another RNA chaperone protein, ProQ, in the pathophysiology of EPEC. Our results suggest that deletion of proQ globally derepresses gene expression from the LEE in lysogeny broth (LB) suggesting that ProQ is a negative regulator of the LEE. Further interrogation revealed that ProQ exerts its effect by downregulating the expression of PerC - a prominent transcriptional activator of the LEE-encoded master regulator ler, which, in turn leads to the observed repression from the other LEE operons. Furthermore, ProQ appears to moonlight as it affects other physiological processes including type IV pili biogenesis, flagellar-dependent motility, biofilm formation, tryptophan metabolism, and antibiotic resistance. Our study provides the very first evidence to implicate ProQ as a pleiotropic regulator in EPEC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2024.107153 | DOI Listing |
Planta
January 2025
ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, Delhi, India.
Small RNA sequencing analysis in two chickpea genotypes, JG 62 (Fusarium wilt-susceptible) and WR 315 (Fusarium wilt-resistant), under Fusarium wilt stress led to identification of 544 miRNAs which included 406 known and 138 novel miRNAs. A total of 115 miRNAs showed differential expression in both the genotypes across different combinations. A miRNA, Car-miR398 targeted copper chaperone for superoxide dismutase (CCS) that, in turn, regulated superoxide dismutase (SOD) activity during chickpea-Foc interaction.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Columbia University Medical Center, New York, NY, USA.
Background: The ubiquitin-proteasome system (UPS) is the primary protein degrading mechanism in eukaryotes, and is essential for cellular homeostasis. Dysregulation of the UPS has been linked to neurodegeneration through two hallmarks, pathogenic protein aggregation and aberrant proteostasis. However, the molecular changes that alter proteasome functioning in AD are poorly understood.
View Article and Find Full Text PDFJ Mol Cell Biol
January 2025
Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China.
The zygotic genome activation (ZGA) is crucial for the development of pre-implantation embryos. Long noncoding RNAs (lncRNAs) play significant roles in many biological processes, but the study on their role in the early embryonic development of pigs is limited. In this study, we identify lncFKBPL as an enhancer-type lncRNA essential for pig embryo development.
View Article and Find Full Text PDFToxicology
December 2024
Université Paris Cité, Inserm, HERA Team, CRESS UMR 1153, F-75006 Paris, France. Electronic address:
Bisphenol A (BPA), a ubiquitous environmental endocrine disruptor, is suspected of disturbing brain development through largely unknown cellular and molecular mechanisms. In the central nervous system, oligodendrocytes are responsible for forming myelin sheaths, which enhance the propagation of action potentials along axons. Disruption of axon myelination can have lifelong consequences, making oligodendrocyte differentiation and myelination critical stages of brain development.
View Article and Find Full Text PDFMicrob Pathog
December 2024
Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan 570228, China. Electronic address:
The RNA chaperone Hfq acts as an important virulence regulator playing a diverse role in the virulence and pathogenicity of several infectious bacteria. As a threating pathogen inducing diseases in humans, animals and aquatic organisms, Aeromonas veronii attracts attentions with respect to its elusive pathogenic mechanism and virulence factors. This study aims to elucidate the functions of hfq gene in A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!