Micronutrient deficiencies in children can occur for multiple reasons, including poor access to food, particular dietary patterns or health conditions that may impact nutrient absorption and utilization. Reduced access to food for infants and young children can lead to malnutrition, increasing the risk of infectious diseases, poor growth, cognitive impairment, emotional dysfunction, and even death. Due to the limited foods available, children with malnutrition also often experience low micronutrient intake. Selective or picky eating is a common feeding difficulty in young children worldwide and can have adverse effects on health and development. Selective eaters generally consume a less diverse diet, leading to an imbalanced nutrient intake. Dietary supplementation provides an individually targeted approach to address micronutrient deficiencies. This strategy has been used safely and effectively to prevent micronutrient deficiencies in high-income countries for over a century. It is the mandatory or voluntary addition of essential micronutrients to widely consumed staple foods and condiments during production. However, worldwide data suggest low compliance with dietary supplementation approaches. This leaves a question mark over the effectiveness of commercial food fortification and highlights the need for improved infrastructure to ensure food fortification or micronutrient supplementation in areas where there is an increased risk of deficiencies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000540211 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Cardiometabolic and Endocrine Institute, North Brunswick, NJ 08902, USA.
Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.
View Article and Find Full Text PDFPlants (Basel)
January 2025
International Education School, Gannan Normal University, Ganzhou 341000, China.
Roots play essential roles in the acquisition of water and minerals from soils in higher plants. However, water or nutrient limitation can alter plant root morphology. To clarify the spatial distribution characteristics of essential nutrients in citrus roots and the influence mechanism of micronutrient deficiency on citrus root morphology and architecture, especially the effects on lateral root (LR) growth and development, two commonly used citrus rootstocks, trifoliate orange ( L.
View Article and Find Full Text PDFNutrients
January 2025
Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
Background/objectives: The DNA methylation of neonatal cord blood can be used to accurately estimate gestational age. This is known as epigenetic gestational age. The greater the difference between epigenetic and chronological gestational age, the greater the association with an inappropriate perinatal fetal environment and development.
View Article and Find Full Text PDFNutrients
January 2025
School of Health and Medical Sciences, University of Southern Queensland, Ipswich 4305, Australia.
: Proper nutrition and hydration are essential for the health, growth, and athletic performance of student-athletes. Adequate energy availability and sufficient intake of macro- and micronutrients support adolescent development, prevent nutrient deficiencies, and reduce the risk of disordered eating. These challenges are particularly relevant to student-athletes, who are vulnerable to nutrition misinformation and often exhibit limited nutrition knowledge.
View Article and Find Full Text PDFNutrients
January 2025
Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria.
Individuals with special metabolic demands are at risk of deficiencies in fat-soluble vitamins, which can be counteracted via supplementation. Here, we tested the ability of micellization alone or in combination with selected natural plant extracts to increase the intestinal absorption and bioefficacy of fat-soluble vitamins. Micellated and nonmicellated vitamins D3 (cholecalciferol), D2 (ergocalciferol), E (alpha tocopheryl acetate), and K2 (menaquionone-7) were tested in intestinal Caco-2 or buccal TR146 cells in combination with curcuma (), black pepper (), or ginger () plant extracts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!