VC dimension of Graph Neural Networks with Pfaffian activation functions.

Neural Netw

Department of Information Engineering and Mathematics, University of Siena, Via Roma 56, Siena, 53100, Italy. Electronic address:

Published: February 2025

Graph Neural Networks (GNNs) have emerged in recent years as a powerful tool to learn tasks across a wide range of graph domains in a data-driven fashion. Based on a message passing mechanism, GNNs have gained increasing popularity due to their intuitive formulation, closely linked to the Weisfeiler-Lehman (WL) test for graph isomorphism, to which they were demonstrated to be equivalent (Morris et al., 2019 and Xu et al., 2019). From a theoretical point of view, GNNs have been shown to be universal approximators, and their generalization capability - related to the Vapnik Chervonekis (VC) dimension (Scarselli et al., 2018) - has recently been investigated for GNNs with piecewise polynomial activation functions (Morris et al., 2023). The aim of our work is to extend this analysis on the VC dimension of GNNs to other commonly used activation functions, such as the sigmoid and hyperbolic tangent, using the framework of Pfaffian function theory. Bounds are provided with respect to the architecture parameters (depth, number of neurons, input size) as well as with respect to the number of colors resulting from the 1-WL test applied on the graph domain. The theoretical analysis is supported by a preliminary experimental study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2024.106924DOI Listing

Publication Analysis

Top Keywords

activation functions
12
graph neural
8
neural networks
8
gnns
5
dimension graph
4
networks pfaffian
4
pfaffian activation
4
graph
4
functions graph
4
networks gnns
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!