A portable microfluidic chip-based fluorescent and colorimetric aptasensor combining recombinase polymerase amplification for bovine pregnancy-associated glycoproteins detection.

Biosens Bioelectron

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China. Electronic address:

Published: February 2025

A portable dual-mode PDMS-based microfluidic chip aptasensor was developed to detect bovine pregnancy-associated glycoproteins (bPAG) in bovine milk. Reagents within the chip chambers underwent reactions driven by gravity, where pre-encoded rich C sequences on the complementary strand of the aptamer facilitated the generation of abundant G-quadruplexes via subsequent RPA reaction, which activated the chromogenic substrates and fluorogenic precursors in the chip, producing distinct colorimetric and fluorescent signals. These signals were captured by our developed smartphone application and converted into RGB values, further enabling the quantification of bPAG with detection limits of 0.079 ng/mL and 0.024 ng/mL for colorimetric and fluorescent modes, respectively, over a linear range of 0.1-100 ng/mL. Bovine milk and other animal source milk were evaluated in the proposed assay, accurate identification results were obtained, indicating significant potential in bovine milk monitoring. The work further provided a valuable reference for point-of-care testing of non-nucleic acid targets in food samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2024.116981DOI Listing

Publication Analysis

Top Keywords

bovine milk
12
bovine pregnancy-associated
8
pregnancy-associated glycoproteins
8
colorimetric fluorescent
8
bovine
5
portable microfluidic
4
microfluidic chip-based
4
chip-based fluorescent
4
fluorescent colorimetric
4
colorimetric aptasensor
4

Similar Publications

Paratuberculosis is an infectious disease caused by subspecies (MAP). Typically, ruminant animals including cattle, buffalo, goats, and sheep are infected with MAP. Animals get infected with MAP in a number of ways, such as by eating or drinking contaminated food or water, or by nursing from an infected mother who may have contaminated teats or directly shed the organism in milk or colostrum.

View Article and Find Full Text PDF

Use of intrauterine dextrose as an alternative to systemic antibiotics for treatment of clinical metritis in dairy cattle: a microbiome perspective.

Front Vet Sci

December 2024

Intergraduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States.

Introduction: Clinical metritis (CM) has significant costs to dairy producers. Current treatment strategy involves systemic antibiotics; however, there is increasing concern about judicious antibiotic use. The study objective was to evaluate the effects of a non-antibiotic treatment vs.

View Article and Find Full Text PDF

Background: Dairy productivity can be improved by controlling metabolic diseases in dairy cows such as milk fever. The aim of this study was to estimate the cumulative incidence of milk fever during four years (2019 to 2022) at an anonymous dairy farm in the Emirate of Abu Dhabi. For this study, the records of the diagnosis of milk fever in 7540 parturient cows during four years was used.

View Article and Find Full Text PDF

Pseudomonas spp. are a psychrotrophic species associated with milk spoilage caused by its enzymatic activities. The aim of this study was to identify Pseudomonas spp.

View Article and Find Full Text PDF

, commonly known as , is a critical zoonotic pathogen that significantly reduces milk yield and product quality and poses a significant risk to public health. Although is increasingly recognised as a principal agent causing milkborne infections, research dedicated to this pathogen in dairy cattle has been less extensive than that of other pathogens. This study aimed to examine the antibiotic resistance profiles of derived from dairy cows and assess its pathogenicity using validated in vivo models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!