Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cyanobacteria are highly abundant in the marine photic zone and primary drivers of the conversion of inorganic carbon into biomass. To date, all studied cyanobacterial lineages encode carbon fixation machinery relying upon form I Rubiscos within a CO-concentrating carboxysome. Here, we report that the uncultivated anoxic marine zone (AMZ) IB lineage of from pelagic oxygen-deficient zones (ODZs) harbors both form I and form II Rubiscos, the latter of which are typically noncarboxysomal and possess biochemical properties tuned toward low-oxygen environments. We demonstrate that these cyanobacterial form II enzymes are functional in vitro and were likely acquired from proteobacteria. Metagenomic analysis reveals that AMZ IB are essentially restricted to ODZs in the Eastern Pacific, suggesting that form II acquisition may confer an advantage under low-O conditions. AMZ IB populations express both forms of Rubisco in situ, with the highest form II expression at depths where oxygen and light are low, possibly as a mechanism to increase the efficiency of photoautotrophy under energy limitation. Our findings expand the diversity of carbon fixation configurations in the microbial world and may have implications for carbon sequestration in natural and engineered systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626144 | PMC |
http://dx.doi.org/10.1073/pnas.2418345121 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!