A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cyanobacteria from marine oxygen-deficient zones encode both form I and form II Rubiscos. | LitMetric

Cyanobacteria are highly abundant in the marine photic zone and primary drivers of the conversion of inorganic carbon into biomass. To date, all studied cyanobacterial lineages encode carbon fixation machinery relying upon form I Rubiscos within a CO-concentrating carboxysome. Here, we report that the uncultivated anoxic marine zone (AMZ) IB lineage of from pelagic oxygen-deficient zones (ODZs) harbors both form I and form II Rubiscos, the latter of which are typically noncarboxysomal and possess biochemical properties tuned toward low-oxygen environments. We demonstrate that these cyanobacterial form II enzymes are functional in vitro and were likely acquired from proteobacteria. Metagenomic analysis reveals that AMZ IB are essentially restricted to ODZs in the Eastern Pacific, suggesting that form II acquisition may confer an advantage under low-O conditions. AMZ IB populations express both forms of Rubisco in situ, with the highest form II expression at depths where oxygen and light are low, possibly as a mechanism to increase the efficiency of photoautotrophy under energy limitation. Our findings expand the diversity of carbon fixation configurations in the microbial world and may have implications for carbon sequestration in natural and engineered systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626144PMC
http://dx.doi.org/10.1073/pnas.2418345121DOI Listing

Publication Analysis

Top Keywords

form rubiscos
12
oxygen-deficient zones
8
form
8
form form
8
carbon fixation
8
cyanobacteria marine
4
marine oxygen-deficient
4
zones encode
4
encode form
4
rubiscos cyanobacteria
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!