A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A recurrent neural network and parallel hidden Markov model algorithm to segment and detect heart murmurs in phonocardiograms. | LitMetric

The detection of heart disease using a stethoscope requires significant skill and time, making it expensive and impractical for widespread screening in low-resource environments. Machine learning analysis of heart sound recordings can improve upon the accessibility and accuracy of diagnoses, but existing approaches require further validation on larger and more representative clinical datasets. For many previous algorithms, segmenting the signal into its individual sound components is a key first step. However, segmentation algorithms often struggle to find S1 or S2 sounds in the presence of strong murmurs or noise that significantly alter or mask the expected sound. Segmentation errors then propagate to the subsequent disease classifier steps. We propose a novel recurrent neural network and hidden semi-Markov model (HSMM) algorithm that can both segment the signal and detect a heart murmur, removing the need for a two-stage algorithm. This algorithm formed the 'CUED_Acoustics' entry to the 2022 George B. Moody PhysioNet challenge, where it won the first prize in both the challenge tasks. The algorithm's performance exceeded that of many end-to-end deep learning approaches that struggled to generalise to new test data. As our approach both segments the heart sound and detects a murmur, it can provide interpretable predictions for a clinician. The model also estimates the signal quality of the recording, which may be useful for a screening environment where non-experts are using a stethoscope. These properties make the algorithm a promising tool for screening of abnormal heart murmurs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588198PMC
http://dx.doi.org/10.1371/journal.pdig.0000436DOI Listing

Publication Analysis

Top Keywords

recurrent neural
8
neural network
8
algorithm segment
8
detect heart
8
heart murmurs
8
heart sound
8
heart
6
algorithm
5
network parallel
4
parallel hidden
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!