Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The detection of heart disease using a stethoscope requires significant skill and time, making it expensive and impractical for widespread screening in low-resource environments. Machine learning analysis of heart sound recordings can improve upon the accessibility and accuracy of diagnoses, but existing approaches require further validation on larger and more representative clinical datasets. For many previous algorithms, segmenting the signal into its individual sound components is a key first step. However, segmentation algorithms often struggle to find S1 or S2 sounds in the presence of strong murmurs or noise that significantly alter or mask the expected sound. Segmentation errors then propagate to the subsequent disease classifier steps. We propose a novel recurrent neural network and hidden semi-Markov model (HSMM) algorithm that can both segment the signal and detect a heart murmur, removing the need for a two-stage algorithm. This algorithm formed the 'CUED_Acoustics' entry to the 2022 George B. Moody PhysioNet challenge, where it won the first prize in both the challenge tasks. The algorithm's performance exceeded that of many end-to-end deep learning approaches that struggled to generalise to new test data. As our approach both segments the heart sound and detects a murmur, it can provide interpretable predictions for a clinician. The model also estimates the signal quality of the recording, which may be useful for a screening environment where non-experts are using a stethoscope. These properties make the algorithm a promising tool for screening of abnormal heart murmurs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588198 | PMC |
http://dx.doi.org/10.1371/journal.pdig.0000436 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!