Dysfunction of calcium channels is involved in the development and progression of some cancers. However, it remains unclear the role of calcium channel inhibitors in tumor immunomodulation. Here, calcium channel blocker lacidipine is identified to potently inhibit the enzymatic activity and expression of indoleamine 2,3-dioxygenase 1 (IDO1), a rate-limiting enzyme in tryptophan metabolism. Lacidipine activates effector T cells and incapacitates regulatory T cells (Tregs) to augment the anti-tumor effect of chemotherapeutic agents in breast cancer by converting immunologically "cold" into "hot" tumors. Mechanistically, lacidipine targets calcium channels (Ca1.2/1.3) to inhibit Pyk2-JAK1-calmodulin complex-mediated IDO1 transcription suppression, which suppresses the kynurenine pathway and maintains the total nicotinamide adenine dinucleotide (NAD) pool by regulating NAD biosynthesis. These results reveal a new function of calcium channels in IDO1-mediated tryptophan metabolism in tumor immunity and warrant further development of lacidipine for the metabolic immunotherapy in breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744582PMC
http://dx.doi.org/10.1002/advs.202409310DOI Listing

Publication Analysis

Top Keywords

calcium channel
12
tryptophan metabolism
12
calcium channels
12
channel blocker
8
blocker lacidipine
8
breast cancer
8
calcium
6
lacidipine
5
lacidipine promotes
4
promotes antitumor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!