Mulberry () is a traditional Chinese fruit that has beneficial effects due to its numerous biological activities. This study aimed to investigate the anti-hyperuricemic activity and underlying mechanism of laboratory-prepared mulberry water extract in mice with hyperuricemia (HUA). Additionally, the effect of mulberry extract (ME) on the microbiota was investigated. The results demonstrated that ME reduced the levels of HUA-related biochemical indices [uric acid (UA), creatinine (Cr), and blood urea nitrogen (BUN)] and pro-inflammatory factors (TNF-α, IL-6, IL-8, and IL-1β) in the serum of HUA model mice. ME suppressed xanthine oxidase (XOD) and adenosine deaminase (ADA) activity while modulating the expression of the urate transporters ATP-binding cassette transporter G2 (ABCG2) and recombinant urate transporter 1 (URAT1) in the kidney. Furthermore, high-dose ME modulated the microbiota, including , , and . Overall, these results demonstrate the efficacy of ME in alleviating HUA by inhibiting XOD and ADA activity, as well as modulating transport proteins to decrease urate synthesis. Additionally, ME regulates the microbiota associated with host UA metabolism. These findings confirm the UA-lowering effects of ME, highlighting its potential as a therapeutic agent for HUA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4fo03481c | DOI Listing |
J Chromatogr A
December 2024
KU Leuven - University of Leuven, Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, O&N2, PB 923, Herestraat 49 3000 Leuven, Belgium. Electronic address:
Natural products (NPs) play an important role in drug discovery and drug development due to their diverse chemical properties and biological activities. In the present work, an on-line capillary electrophoresis (CE) method was developed and applied to screen protein tyrosine phosphatase 1B (PTP1B) inhibitors in NPs. As a generic technique, transverse diffusion of laminar flow profiles (TDLFP) was utilized to mix all reactants in the capillary for on-line enzymatic reaction.
View Article and Find Full Text PDFFood Chem
December 2024
Key Lab of Clean Energy and Green Circulation, College of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China. Electronic address:
Lactiplantibacillus plantarum NUC08, a novel probiotic strain, has demonstrated potential for synergistic fermentation with starter cultures. This study investigates its functional properties in fermented milk and examines how mulberry fruit extract (MFE), rich in bioactive compounds, may influence its fermentation performance. MFE significantly boosted LAB growth, improved texture and rheological properties, and enhanced antioxidant capacity in the probiotic yogurt.
View Article and Find Full Text PDFDrug Dev Ind Pharm
December 2024
School of Pharmacy, The Neotia University, Sarisha, West Bengal, India.
Objective: This study aimed to formulate leaf extract (MAE) loaded solid lipid nanoparticles (SLNs) and investigate its cytotoxic potential using MDA-MB231 cell line.
Significance: SLNs can protect MAE from degradation, enhance cytotoxicity potential, and making them suitable for various therapeutic areas.
Methods: SLNs were developed using high-pressure homogenization method, and the formulations were optimized based on particle size, zeta potential, % entrapment efficiency (EE), and % cumulative drug release (CDR).
Front Pharmacol
November 2024
Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
Introduction: Type 2 diabetes (T2D) is a metabolic disorder marked by disruptions in glucolipid metabolism, with numerous signaling pathways contributing to its progression. The liver, as the hub of glycolipid metabolism, plays a pivotal role in this context. Mulberry leaf (ML), a staple in traditional Chinese medicine, is widely utilized in the clinical management of T2D.
View Article and Find Full Text PDFFood Chem
February 2025
College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China; Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, People's Republic of China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!