Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There have been few studies that have examined hemodynamic responses to low-frequency neuromuscular electrical stimulation (LF-NMES), and the effects of combining passive cycle ergometry are still unclear. The purpose of this study was to examine the effects of a combination of LF-NMES and passive cycle ergometry on hemodynamic responses with a primary focus on the Fick principle in healthy adults. A randomized, crossover trial was conducted to evaluate the responses to three types of supine exercises (LF-NMES alone, LF-NMES with passive cycle ergometry, and voluntary cycle ergometry) adjusted to the same exercise intensity as the oxygen consumption of 14 mL/kg/min in 13 healthy adult men. Blood pressure, heart rate, blood lactate concentration, stroke volume (SV), cardiac output (CO), and left ventricular end-diastolic volume (LVEDV) were measured during each exercise in all subjects. The arterial-venous oxygenation difference (A-V̇o difference) was calculated based on Fick's equation. LVEDV, SV, and CO were lower, and the A-V̇o difference and blood lactate concentration were higher in LF-NMES alone than those in voluntary cycle ergometry and LF-NMES with passive cycle ergometry ( < 0.05). The blood lactate concentration was lower in LF-NMES with passive cycle ergometry than that in LF-NMES alone, but slightly higher than that in voluntary cycle ergometry ( < 0.05). Hemodynamic and metabolic responses of exercise with LF-NMES alone seemed consistent with insufficient peripheral perfusion based on the elevation of A-V̇o difference and blood lactate concentration. The findings suggest that combining passive cycle ergometry with LF-NMES improves the insufficient peripheral perfusion induced by LF-NMES alone. This is the first study to evaluate cardiac output, oxygen consumption, and A-V̇o difference during LF-NMES of endurance exercise modality. LF-NMES alone may not demonstrate hemodynamic responses induced by voluntary endurance exercise, however, demonstrates those when combined with passive cycle ergometry. LF-NMES with passive cycle ergometry may be a more effective approach in cardiac rehabilitation for patients without the ability of voluntary exercise because it may increase cardiac output and venous return as represented by the LVEDV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00141.2024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!