The effectiveness and safety of two types of samples based on a biocompatible polymer material made of methacrylic oligomers (Reperen) as a potential antiadhesion pericardial barrier were evaluated in in vitro and in vivo experiments. Two kinds of samples, reinforced with a polyamide mesh and without reinforcement, were used. In in vitro experiments, no adhesion and aggregation of human fibroblasts to the test samples were detected. In in vivo experiments, the samples implanted to rats into the thigh muscles were easily separated from the surrounding tissues 1, 2, and 3 weeks after implantation, being weakly fixed only in the area of the edges. Histological examination at week 2 after implantation revealed no differences between the experimental and control groups. At week 1 and 3, fibrosis and inflammation were more pronounced in animals of the control group (with simulated implantation). The properties demonstrated by both samples of Reperen barriers (with and without polyamide mesh reinforcement) in vivo and in vitro allow considering them as a potential antiadhesion pericardial barrier for clinical use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10517-024-06300-y | DOI Listing |
Int J Biol Macromol
December 2024
Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, Turkey. Electronic address:
Foam-based wound dressing materials produced by dispersing gas phases in a polymeric material are soft, adapt to the body shape, and allow the absorption of wound exudate due to their porous structure. Most of these formulations are based on synthetic substances such as polyurethane. However, biopolymers have entered the field as a new player thanks to their biocompatible and sustainable nature.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China. Electronic address:
Hydrogels are promising wound dressings due to their extracellular matrix-like properties and tunable structure-function characteristics. Besides the physical isolation effect, hydrogel dressings are highly expected to possess tissue-adhesive performance and antibacterial capacity, which are beneficial for their clinical translations. Herein, a guar gum (GG)-based nanocomposite hydrogel was fabricated by mixing methacrylated GG (GGMA), acrylic acid, acrylated 3-aminophenylboronic acid, mangiferin (MF)-loaded cetyltrimethyl ammonium chloride (CTAC) micelles (MF@CTAC) and radical initiator.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemistry and Chemical Engineering, North University of China, No.3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China.
This study developed PQSp wound dressing hydrogels (S0-S6) using polyvinyl alcohol (PVA), quaternary chitosan (QCS), and sodium alginate (SA) as the matrix, with the addition of coconut mesocarp polyphenol (P-CTP, 0.1 %, 0.5 %, and 1.
View Article and Find Full Text PDFInt J Pharm
December 2024
Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
Combination therapy using multiple drugs has the potential for synergistic therapeutic effects and reduction in the administered dose. Furthermore, when combined with a drug delivery system, the therapeutic agents can effectively be targeted and delivered to the affected area. Therefore, a single carrier capable of encapsulating multiple drugs is of clinical significance.
View Article and Find Full Text PDFPathol Res Pract
December 2024
Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India. Electronic address:
Several molecular strategies based on targeted gene delivery systems have been developed in recent years; however, the CRISPR-Cas9 technology introduced a new era of targeted gene editing, precisely modifying oncogenes, tumor suppressor genes, and other regulatory genes involved in carcinogenesis. However, efficiently and safely delivering CRISPR-Cas9 to cancer cells across the cell membrane and the nucleus is still challenging. Using viral vectors and nanoparticles presents issues of immunogenicity, off-target effects, and low targeting affinity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!