(HP) has been widely used as an alternative medicine due to its active pharmacological properties. While the antiproliferative effects of components such as hypericin and hyperforin have been demonstrated in malignant cell lines, most studies have focused on the pharmacological properties of the HP extract itself. Recent research has indicated that HP and its active substances possess anticancer activities; however, there is a lack of studies examining its effects on osteosarcoma. In addition, HP has demonstrated the ability to mitigate the toxicity of several drugs, including chemotherapeutic agents. Hence, the primary objective of this study was to explore the potential anticancer properties of HP in relation to osteosarcoma cells. MG-63 human osteosarcoma cells were cultured and treated with HP extract. Apoptotic factors were analyzed using ELISA, while cell viability was assessed using the MTT test. The results revealed a significant increase in the activities of proapoptotic proteins GRP78, Wee1, apoptosis-inducing factor (AIF), GADD153, Bax, and cleaved caspase-3 in MG-63 osteosarcoma cells after 48 hours of treatment with HP at a concentration of 0.8%. Conversely, the activity of Bcl-2, an antiapoptotic protein, significantly decreased. Moreover, HP extract demonstrated a dose-dependent reduction in cell viability in MG-63 cells. In conclusion, HP extract induces apoptosis in MG-63 osteosarcoma cells by upregulating the expressions of proapoptotic proteins GRP78, Wee1, AIF, GADD153, Bax, and cleaved caspase-3. This study will assist researchers in understanding the importance of alternative treatments using HP in the context of human osteosarcoma therapy, which many researchers are currently unaware of.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/jmf.2023.0236 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!